

Cashflow-at-Risk und Earnings-at-Risk

Eurorisk Systems Ltd. 31, General Kiselov Str. 9002 Varna, Bulgaria Tel. +359 52 612 367 Fax +359 52 612 371

E-mail: info@eurorisksystems.com Web: www.eurorisksystems.com

Agenda

⇒Workshop Teil I

- 1. Einleitung
 - Definition von Cash flow-at-Risk (CfaR) und Earnings-at-Risk (EaR)
- 2. Darstellung von Projekt-Cashflows aus Bilanzstrukturen
 - Projektbilanz, Produktionsbilanz, Bankenbilanz,
 - Businesspläne, Budgetierungsmodelle, Risikohorizont
- 3. Marktgrößen als Risikotreiber für unsichere Cashflows
 - Rohstoffpreise, Währungskurse, Zinsen, Wirtschaftskennzahlen
 - Beschreibung Corporate-spezifischer Gleichungen für Bilanzposten und zukünftige Perioden, "pro forma statements"
 - lineare und nicht-lineare Zusammenhänge
- 4. Forecasting der Wertentwicklung
 - Schätzung von Volatilitäten und erwarteten Cashflows
 - Berechnung von historischen Volatilitäten und Korrelation
 - Forecasting aus historischen und impliziten Marktdaten
 - Anwenderdefinierte Szenarien

⇒Workshop Teil II

- 5. Bewertung mittels mehrdimensionale Monte Carlo Simulation
 - CfaR/EaR Framework, I Level und II Level Simulation, Volatility-Bridge
 - Simulation von unsteten Cashflows für Bilanzposten und zukünftige Periode anhand Corporate-spezifischer Gleichungen
 - Aggregation der Cashflows entlang der Bilanzstruktur
- 6. Berechnung von Cash flow-at-Risk (CfaR), Earnings-at-Risk (EaR)
 - Auswertung der CfaR-Verteilungen pro Bilanzposten, pro zukünftige Periode und für die Gesamtbilanz
 - Berechnung von Expected Loss bezüglich Budgetvorgaben
 - Berechnung von CfaR und EaR für verschiedene Konfidenzintervalle
- 7. Aspekte der Implementierung
 - Implementierung als separate Anwendung mit Microsoft.Net und C#
 - Integration der Anwendung Liquiditätsplanung
 - Reporten von Bilanz-, Perioden- und Aggregationsergebnissen

Cash flow-at-Risk (CfaR) und Earnings-at-Risk (EaR)

⇒ Definition von Cashflow-at-Risk (CFaR) und Earning-at-Risk (EaR)

Cash flow-at-Risk (CfaR):

Der maximale Netto-Cashflow-Verlust eines Bilanzpostens, der relativ zum Netto-Projekt-Cashflow (Budgetwert) und einem Konfidenzintervall innerhalb einer Betrachtugsperiode durch Marktrisiko-Einflüsse verloren gehen kann. Der Cashflow ist definiert als die Netto-Änderung der Zahlungsbilanz.

Earnings-at-Risk (EaR):

Der maximale Ertragsverlust eines Bilanzpostens, der relativ zum Projektertrag (Budgetertrag) und einem Konfidenzintervall innerhalb einer Betrachtungsperiode durch Marktrisiko-Einflüsse verloren gehen kann.

Literaturquellen: (aus www.riskmetrics.com)

- CorporateMetricsTechDoc.pdf Beschreibung des Frameworks
- LongRunTechDoc.pdf Beschreibung für den Langzeit-Forecast und die Volatility Bridge.

Cash flow-at-Risk (CfaR) und Earnings-at-Risk (EaR)

⇒ Berechnungsverfahren für CfaR und EaR

⇒ Framework

- 1. Darstellung von volatilen und operativen Cashflows für Corporates und Banken für mittel- bis langfristige Risikohorizonte (3, 12, 24 Monate)
- 2. Abhängigkeit der Einzelncashflows von Marktgrößen (Rohstoffpreise, FX, Zinsen, Indizes)
- 3. Aufstellung von Corporate-spezifischen Gleichungen (Equations) für Cashflows oder Preise
- 4. Periodische Darstellung (Tag, Woche, Monat, Quartal) der Projekt-Cashflows in Businessplänen, Budgetierungsmodellen oder "pro forma statements"
- 5. Strukturierung der In/Out-Cashflows innerhalb von Bilanzstrukturen

Cashflow-at-Risk (CfaR) und Earnings-at-Risk (EaR)

⇒ Berechnungsverfahren für CfaR und EaR

⇒ Simulation

- 1. Langzeit-Prognose der Wertentwicklung und Volatilität der Marktgrößen (Long Run), Aufbau von Tageswerten über Volatility-Bridge
- 2. Mehrdimensionale Monte Carlo Simulation der Corporate-spezifischen Gleichungen
- 3. Cashflow-Aggregation in jeder zukünftigen Periode entlang der Bilanzstruktur
- 4. Aufbau von Wert(Cash flow)-Verteilungen pro Posten in der Bilanz und pro Periode in die Zukunft
- 5. Ablesen von mehrdimensionalen CfaR und EaR aus den Verteilungen pro Periode, pro Bilanzposten und für die Gesamtbilanz für gegebene Konfidenzintervalle

Cash flow-at-Risk (CfaR) und Earnings-at-Risk (EaR)

- ⇒ Betriebswirtschaftlicher Nutzen von CfaR und EaR
- Nutzungsebenen: Betrieb, Management, Aufsicht
- Erhöhung der Risikotransparenz und Risikolimitierung

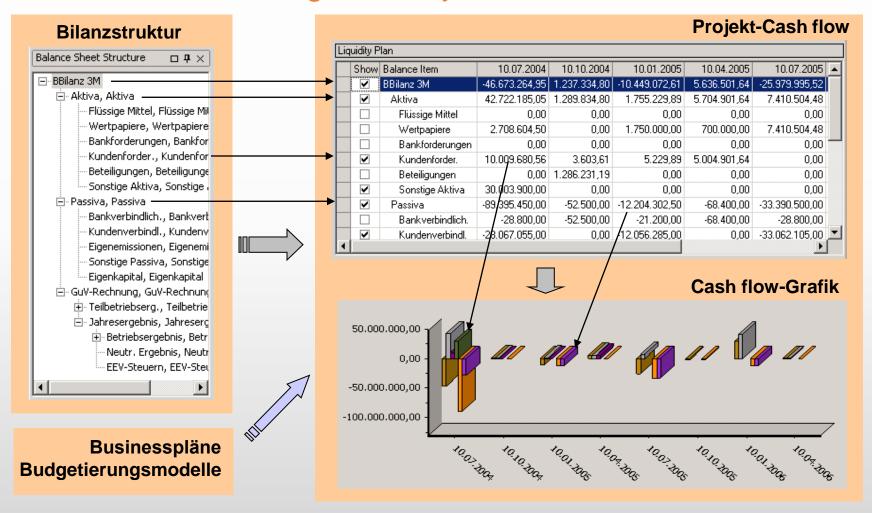
Die formale Qualifizierung des Einflusses der Marktvolatilität auf die Finanzergebnisse sollte eine bessere Darstellung für die betriebswirtschaftlichen Risiken innerhalb der Institution sichern und zum Aufbau von Systemen zur Risikolimitierung für CfaR und EaR führen

Kommunikation und Vereinheitlichung der Risikokennzahlen

Die Nutzung von CfaR und EaR als Risikokennzahlen verbessert die Kommunikation zwischen Betrieb, Management, Aufsicht, Investoren, Ratingagenturen und regulatorischen Organen.

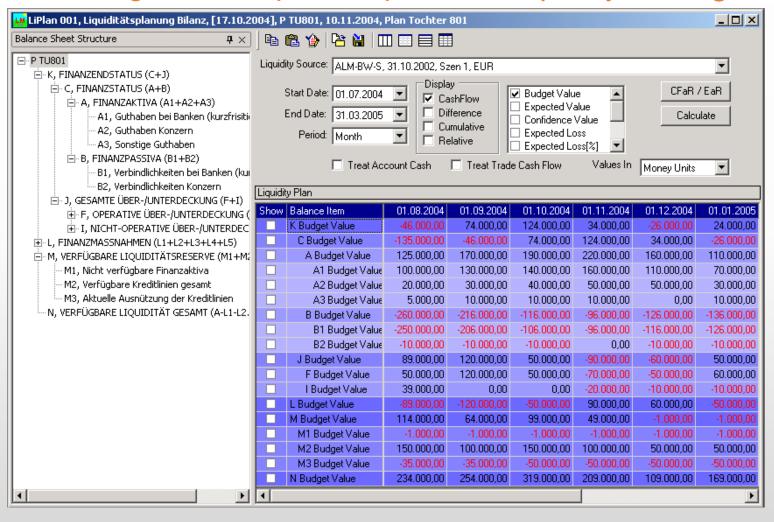
Hedging, Kapital-Allokation und Performance-Optimierung

Die Integration von Risiko- und Ertragsanalysen führt zur Aufstellung effektiver Hedgingstrategien und zur Allokation von Kapital und Risiko-Performance- Optimierung

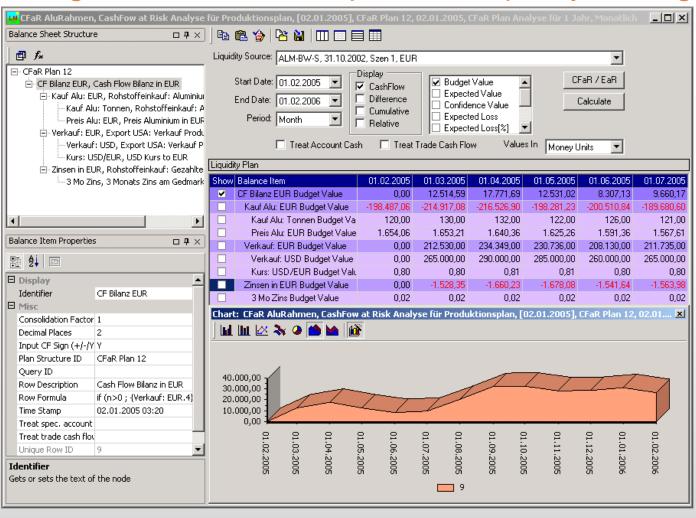

Vergleich Marktrisiko und Cashflow-at-Risk (CfaR)

Parameter	Marktrisiko	CfaR und EaR		
Bereich	Finanzbereich	Unternehmensbereich		
Framework	RiskMetrics	CorporateMetrics		
Bewertung des	Fair Value (mark to	Erträge, Cash flows		
Positionswertes	market)	(Buchhalterische Betrachtung)		
Risikohorizont	Tag, Monat	Monat, Quartal, Jahr		
Periode	für eine Periode	für mehrere Perioden		
Konfidenzintervall	1%	5%		
Benchmark	Risiko-Gitterpunkte	Wertentwicklungen		
	(Marktindex,	(Businesspläne,		
	Währungskurse,	Budgetierungsmodelle,		
	Zinskurven)	Forwards, Prognosen)		
Aggregation	gation Portfolio Bilanzstruk			

2. Projekt-Cash flows


Periodische Darstellung des Projekt-Cashflow auf Bilanzstrukturen

2. Projekt-Cashflows


Darstellung eines Liquiditätsplans in Liquidity Manager

2. Projekt-Cashflows

Darstellung eines Produktionsplans in Liquidity Manager

Rohstoffpreise, Marktdaten, Wirtschafts- und Branchenkennzahlen

Nationale und internationale Zeitreihen und Statistik

- Beispiele: Dow Jones Global Industry Indexes, Reuters RIC's, ...
 Die Berechnung historischer Volatilitäten und Korrelation ist möglich

⇒ Rohstoffpreise

- Aluminium, Kupfer, Eisen, Blei, Silber ..., Holz,..., Kunststoff, ...
- Wolle, Baumwolle, Seide, ..., Genussmittel, ...

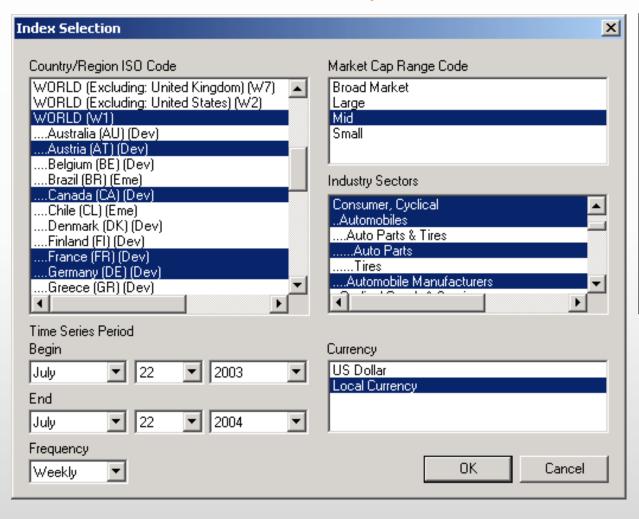
⇒ Energie

• Brent-Öl, WTI-Öl, Gas, Elektrizität, ...

⇒ Finanzen

Zinsen, Währungskurse, Preise, Renditen, Steuersätze

⇒ Branchenkennzahlen


Strukturierte Aktienindizes, Branchenindizes, Fonds

⇒ Kennzahlen der Gesamtwirtschaft oder der Länder

• Inflationsrate, Bruttoinlandsprodukt, Wirtschaftszyklus, ...

Dow Jones Global Industry Historical Indexes

Exposure Maps: Corporate-spezifische Gleichungen

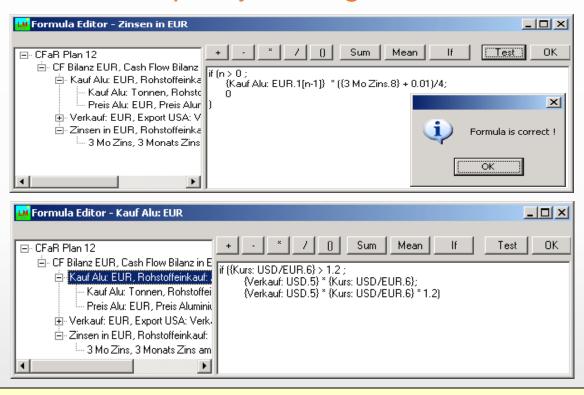
Beispiel: Deutsches Unternehmen, Risikohorizont = 1 Jahr

Rohstoffeinkauf: Aluminium in EUR Export der Produktion: nach USA

Refinanzierung: 3-Monats Libor + 100 BP

	1 Quartal	2 Quartal	3 Quartal	4 Quartal	Jahr
Kauf Aluminium (Tonnen)	120	122	118	126	486
Preis (Tonne, EUR)	1.400	1.430	1.460	1.470	
Kauf Aluminium (EUR)	168.000	174.460	172.280	185.220	699.960
Verkauf Produktion (USD)	230.000	225.000	236.000	238.000	929.000
USD Kurs	1,22	1,2	1,18	1,15	
Verkauf Produktion (EUR)	188.525	187.500	200.000	206.957	782.981
3 Monats Libor(%)	4,220%	4,180%	4,130%	4,280%	
Zahlen Zinsen	2.192	2.259	2.209	2.445	9.106
Cash Flow	18.332	10.781	25.511	19.292	73.915

Beschreibung der Cashflow über Gleichung:


Cashflow = - KaufAlu*PreisAlu*(1+(Libor+100BP)/4) + Prod/USD Kurs

Für das zweite Quartal:

Cash flow = - 122*PreisAlu*(1+(Libor+100BP)/4) + 225.000/USD Kurs

Formeln-Editor in Liquidity Manager

Beispiele für Corporate-spezifische Gleichungen:

Bedingung entlang der Zeitachse: Zinszahlung erst ab dem 2-ten Datum Option für das Exposure: Der USA-Verkauf hängt vom Kurs zu USD ab

Exposure Maps: Corporate-spezifische "pro forma statements"

ABC-USA: Pro Forma Income Statement						
Consolidated (\$000s)	4Q 1998	1Q 1998	2Q 1999	3Q 1999	Total 4 Qtrs	
Revenue						
Revenue US	14,000	14,035	14,035	13,965	56,035	
Revenue Japan, ¥000s	200,000	199,800	199,800	200,200		
Budget rate, (¥ per \$)	140	142	145	150		
Revenue Japan	1,429	1,407	1,378	1,335	5,548	
Total Revenue	15,429	15,442	15,413	15,299	61,583	
Expenses						
Gold purchase, Troy oz.	5,000	5,004	5,004	4,979		
Budget rate, USD per oz.	(300)	(300)	(300)	(300)		
Gold expense	(1,500)	(1,501)	(1,501)	(1,494)	(5,996)	
General expense	(10,000)	(10,000)	(10,000)	(9,900)	(39,900)	
Transaction gain/loss	(41)	(20)	(29)	(46)	(136)	
Interest expense	(731)	(731)	(731)	(731)	(2,925)	
Depreciation	(500)	(500)	(500)	(500)	(2,000)	
Total expenses	(12,772)	(12,753)	(12,762)	(12,671)	(50,957)	

Exposure Maps: lineare und nicht-lineare Zusammenhänge

- **⇒** Darstellung von Exposure Maps durch Exposure Formeln
 - 1. Lineare Formeln: Risikobewertung durch VaR/CoVaR möglich

Beispiel: Eine Periode (Kauf Rohstoffe, Verkauf im Ausland)

Simulationsgrößen sind: Preis_Rohstoff, FX_Kurs

```
Cashflow = - Volumen_Rohstoff * Preis_Rohstoff 
+ Volumen_Produkte * FX_Kurs
```

2. Nicht-lineare Formeln: Risikobewertung durch Monte Carlo Simulation

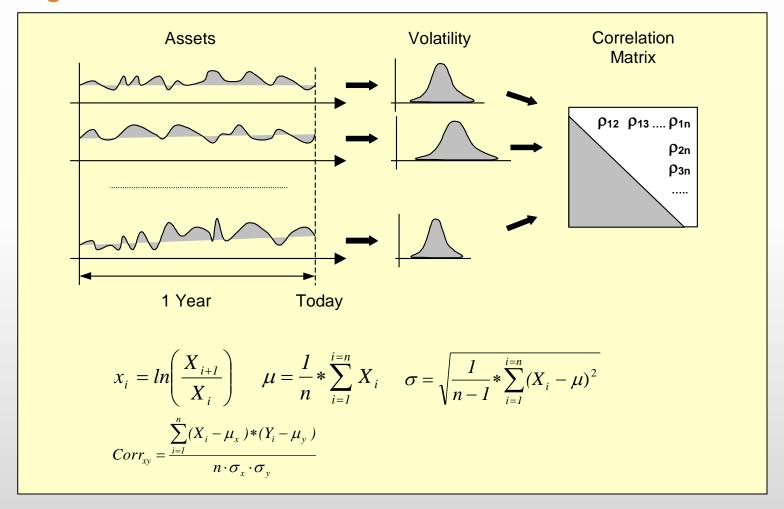
Beispiel: Mehrere Perioden mit Preiselastizität (Verkauf im Ausland)

Simulationsgrößen sind die Währungskurse: FX_{i-2}, FX_{i-1}, FX_i

Der Preis für jede nächste Periode wird mit der Änderung des Währungskurses aus der Vorperioden zu 70% angepasst:

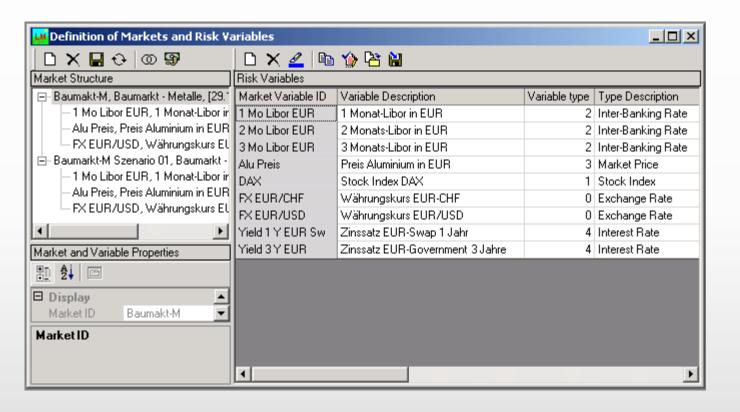
```
Preis<sub>i</sub> = Preis<sub>i-1</sub> *[ 1+ 0,7 * (FX_{i-1} / FX_{i-2} -1)]
Cash flow<sub>i</sub> = Preis<sub>i</sub>* Volumen * FX_i
```


Schätzung von Volatilitäten und erwarteten Cashflows

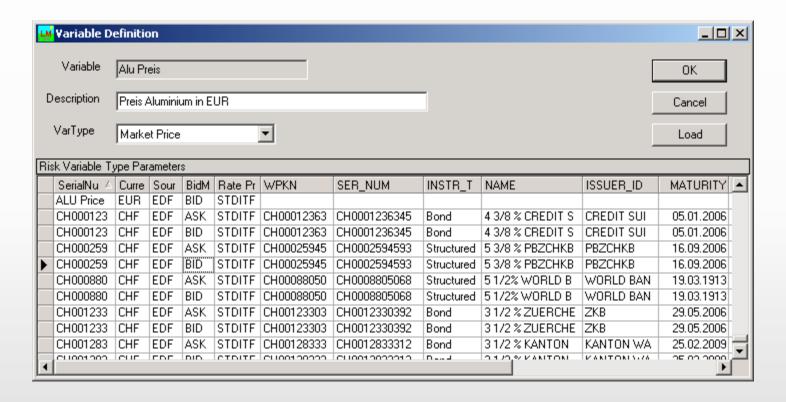

- ⇒ Schätzung von Volatilitäten und erwarteten Cashflows pro Marktgröße und pro zukünftige Periode (Quelle LongRun Technical Document)
 - Forecast aus historischen Daten
 - Zeitreihen von Preisen, Indizes, Währungskursen
 - Forecast aus Marktpreisen
 - Forecasts aus Futures und Forwards
 - Forecasts aus Optionen und Swaptions, Term Structure of implied Volatility, "Volatility smile" für Optionen
 - Forecast mit Econometric Models

(parametric models, non-parametric models)

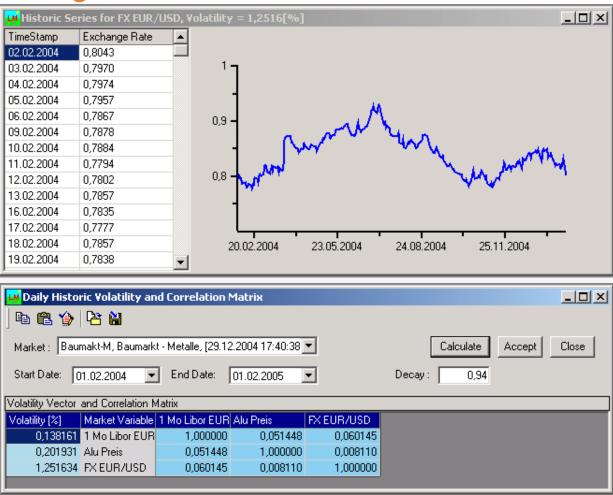
- Difference VARM (DVAR), Vector ECM (VECM)
- Adaptive ECM (AECM)
- Anwenderdefinierte Szenarien
 - Anwendung historischen Daten, Wirtschaftszyklus
 - Vorgabe von Szenarien für Volatilitäten und erwartete Cashflows



Berechnung von historischer Performance, Volatilitäten und Korrelation



Definition von Märkte und Risikofaktoren in CFaR/EaR



Zuordnung Daten zu Risikofaktoren in der CFaR/EaR Analyse

Berechnung der historischen Volatilität und Korrelation in CFaR/EaR

Forecasting aus impliziten Swaption-Volatilitäten

Volatility of Swap Rates	Interval(Years)					
Start (Years)	1	2	3	4	5	
1	17,10%	16,50%	15,20%	14,40%	13,70%	
2	18,00%	16,30%	14,90%	13,60%	12,90%	
3	17,80%	15,60%	14,00%	12,70%	12,00%	
4			13,00%			
5	15,80%	13,70%	12,20%	11,30%	10,70%	

Implied 1 Year Swap Rates					
Period	Swap Rates				
starting year 1 and ending year 2.	5,090%				
starting year 2 and ending year 3.	5,395%				
starting year 3 and ending year 4.	5,603%				
starting year 4 and ending year 5.	5,896%				
starting year 5 and ending year 6.	6,062%				

Reuters

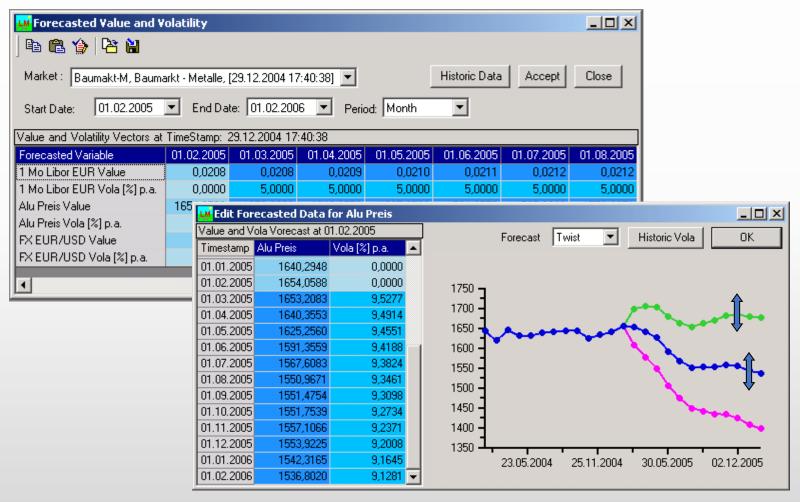
Variance/Covariance Algebra

$$V_{Z} = \frac{1}{z} \sqrt{(xV_{X})^{2} + (yV_{Y})^{2} \pm 2*Cov_{XY}}$$

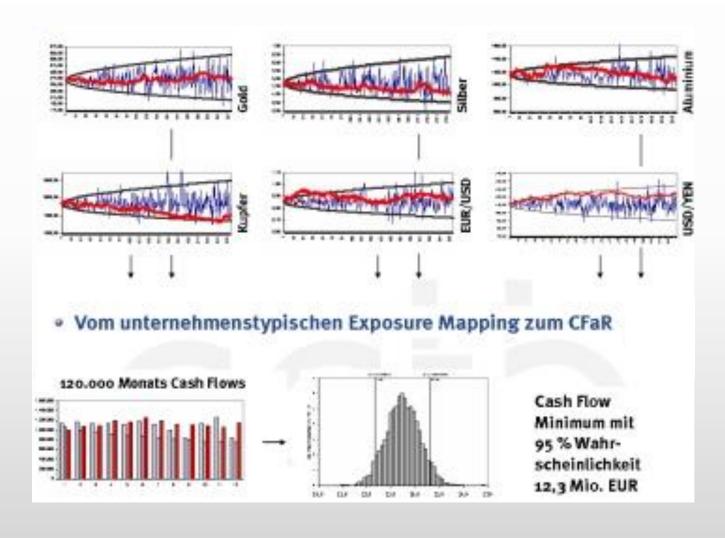
$$Cov_{XY} = (xV_{X})*(yV_{Y})*\rho_{XY}$$

$$Cov_{XY} = Cov_{XY_{1}} \pm Cov_{XY_{2}}$$

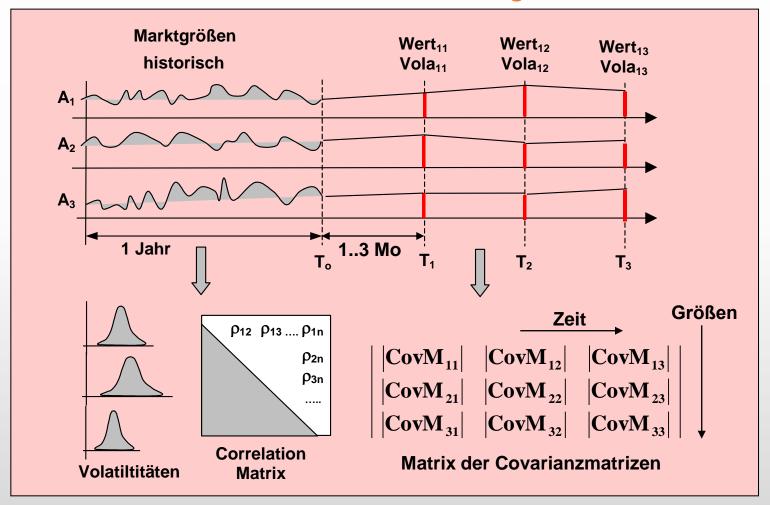
Correlation of Swap Rates	1	2	3	4	5
1	1,000	0,770	0,418	0,542	0,787
2	0,770	1,000	0,660	0,466	0,302
3	0,418	0,660	1,000	0,628	0,391
4	0,542	0,466	0,628	1,000	0,603
5	0,787	0,302	0,391	0,603	1,000



Anwenderdefinierte Szenarien aus dem Wirtschaftszyklus

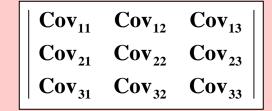


Anwenderdefinierte Szenarien für Volatilität und Wertentwicklung



CfaR und EaR Framework - Überblick

CfaR und EaR Framework - Berechnung der Simulationsdaten



CfaR und EaR Framework, Level I Simulation

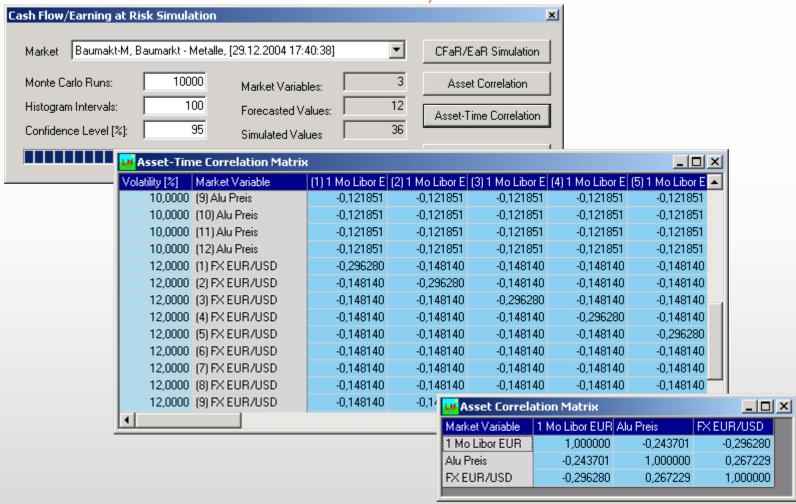
Matrix der Covarianzmatrizen

Auto-Covarianzmatrix(Zeit x Zeit)

(Zeit x Größe)

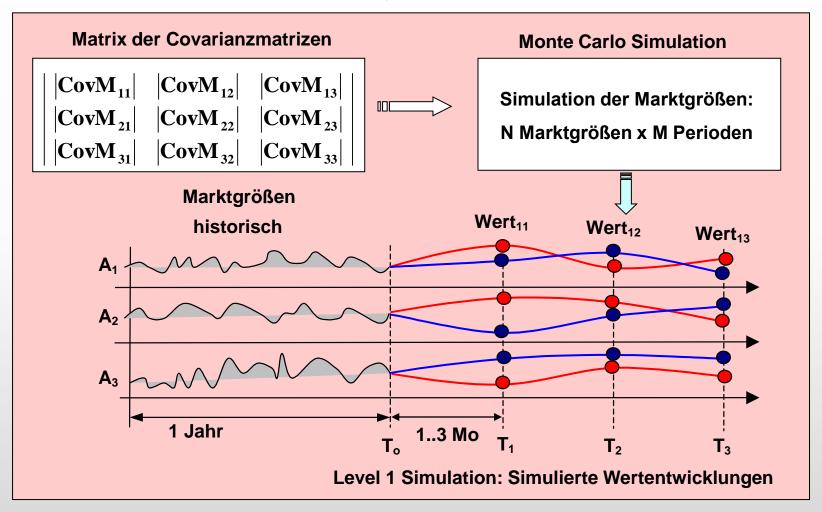
Berechnung der Auto-Covarianzen

$$Cov_{i,i} = 1; \quad Cov_{m,n} = \frac{1}{2} \left(Vola_m^2 + Vola_n^2 - Vola_{n-m}^2 \right)$$


$$Beispiel: \quad Cov_{1,3} = \frac{1}{2} \left(Vola_1^2 + Vola_3^2 - Vola_2^2 \right)$$

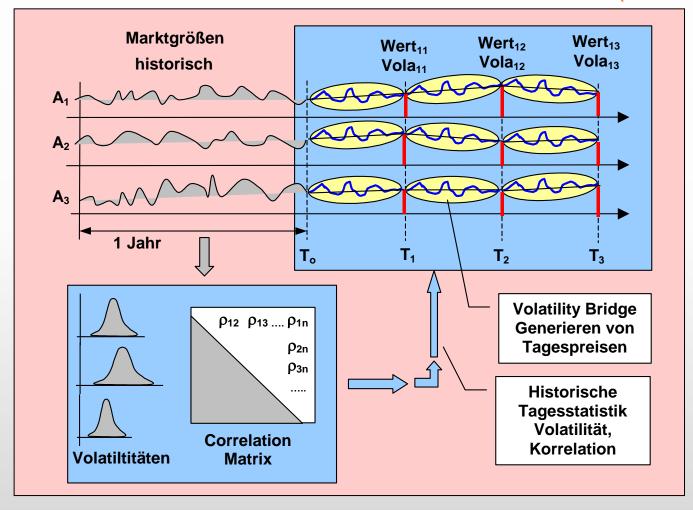
Berechnung der Cross-Covarianzen

$$\begin{split} &Cov\big(m,n\big)_{\!_{i}}\big(m,n\big)_{\!_{j}} = \rho_{n-m} * Vola(n-m)_{\!_{i}} * Vola(n-m)_{\!_{j}} \\ &Correlation \; \rho_{n-m} = f(historic \, Return, forecasted \, Return) \end{split}$$

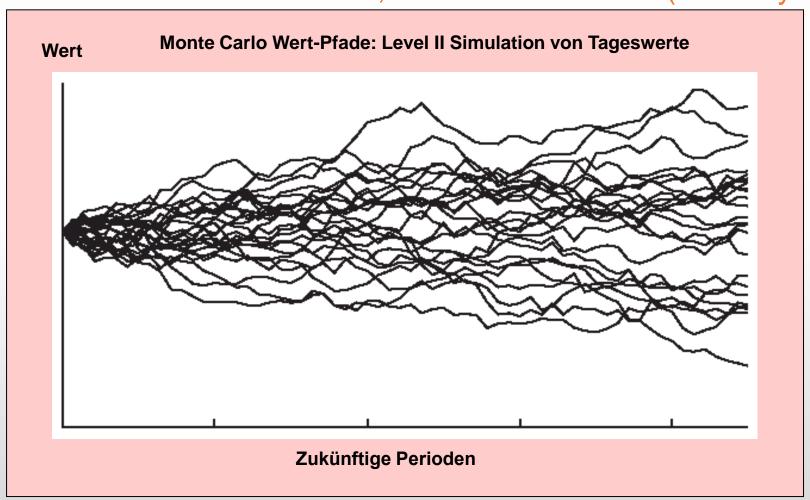


Level I Simulation: Risikofaktoren-, Risikofaktoren x Zeit-Korrelation

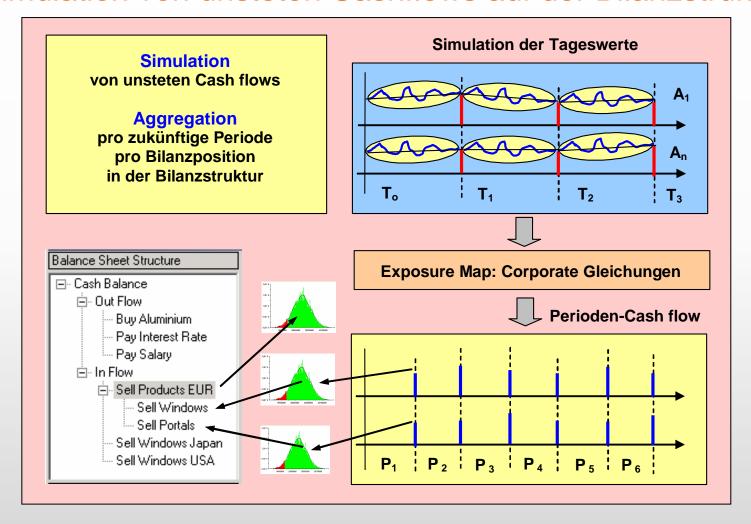
CfaR und EaR Framework, Level I Simulation



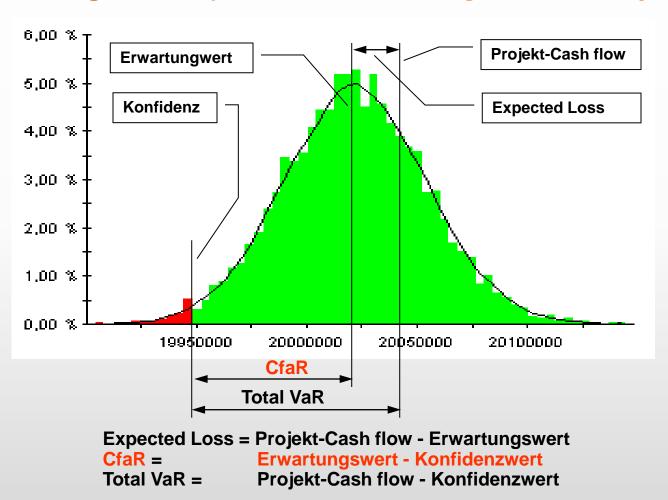
CfaR und EaR Framework, Level I Simulation



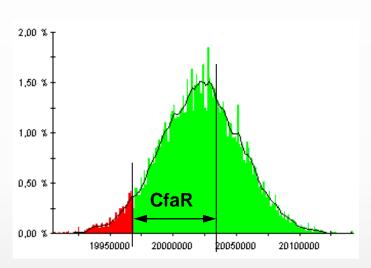
CfaR und EaR Framework, Level II Simulation (Volatility-Bridge)

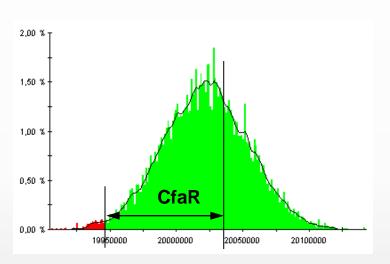


CfaR und EaR Framework, Level II Simulation (Volatility-Bridge)



Simulation von unsteten Cashflows auf der Bilanzstruktur

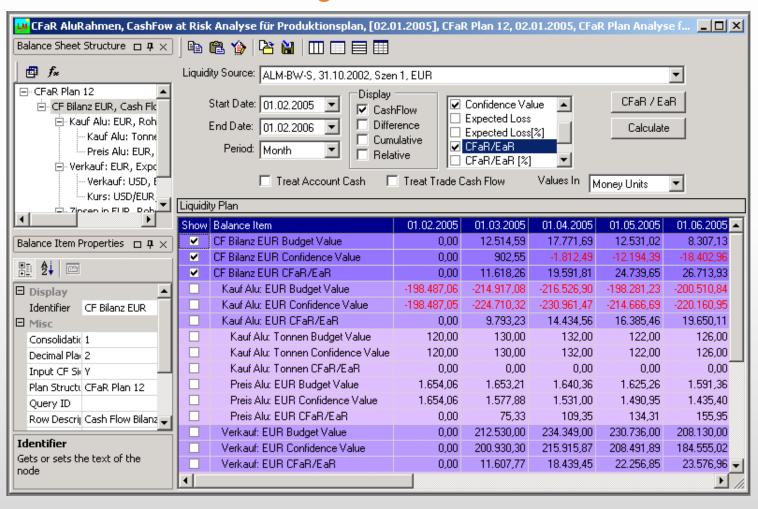

Berechnung von Expected Loss bezüglich der Projekt-Cashflows



Berechnung von CfaR und EaR für verschiedene Konfidenzintervalle

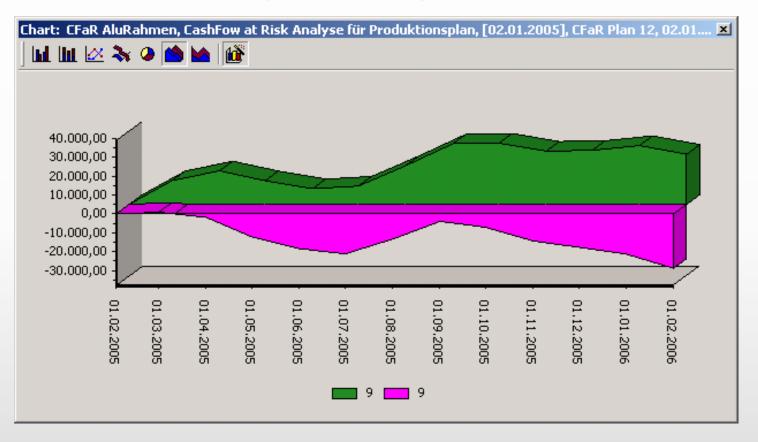
Konfidenzintervall = 5%

Konfidenzintervall = 1%

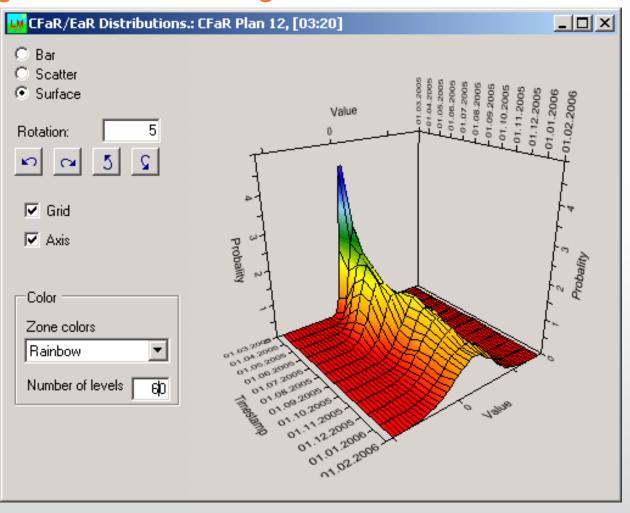


Die Berechnung von CfaR erfolgt aus der aufgebauten Verlustverteilung:

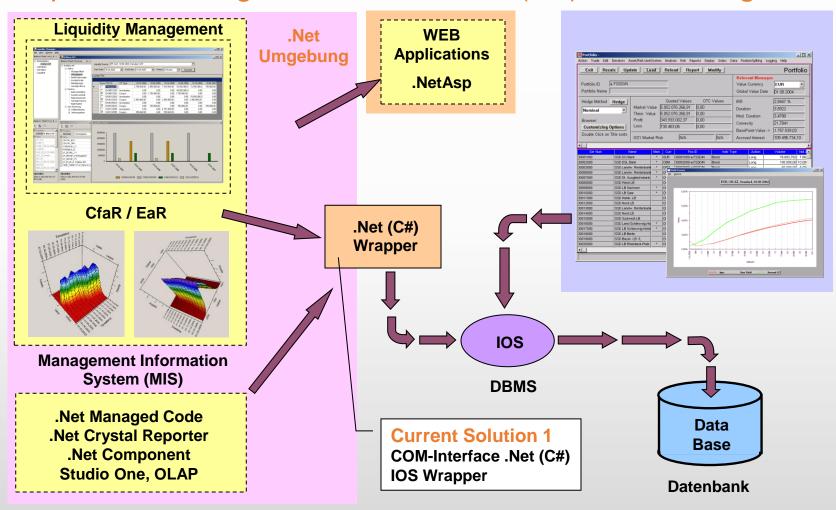
- Die Ergebnisse aus der Monte Carlo Simulation werden in aufsteigender Reihenfolge geordnet
- i = Konfidenzinterval*Anzahl der Simulationsschritte (z.B = 5%*10.000 = 500)
- Der i-te Ergebnis entspricht dem Konfidenzwert
- Total VaR = Projekt-Cash flow Konfidenzwert



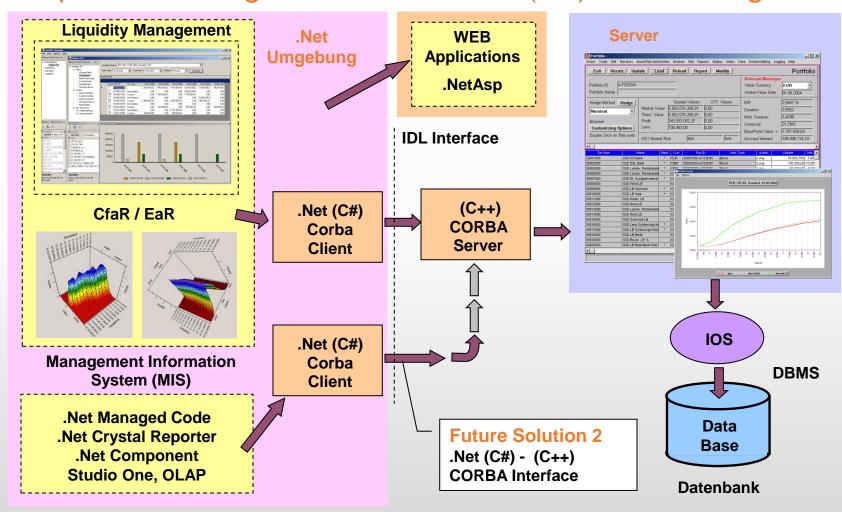
Tabellarische Darstellung vom Konfidenzwert und CFaR-EaR


Grafische Darstellung vom Budgetwert und Konfidenzwert

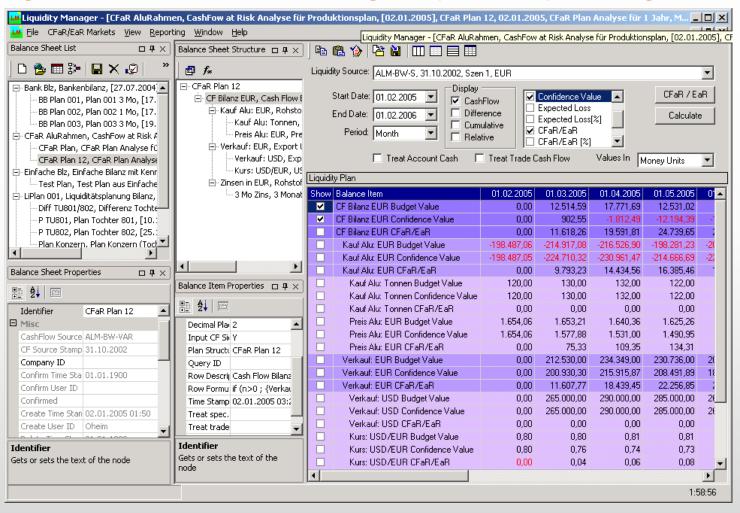
Die Entwicklung vom Budgetwert (grün) ist positiv Die Entwicklung vom Konfidenzwert (Lila) bei 95% ist negativ



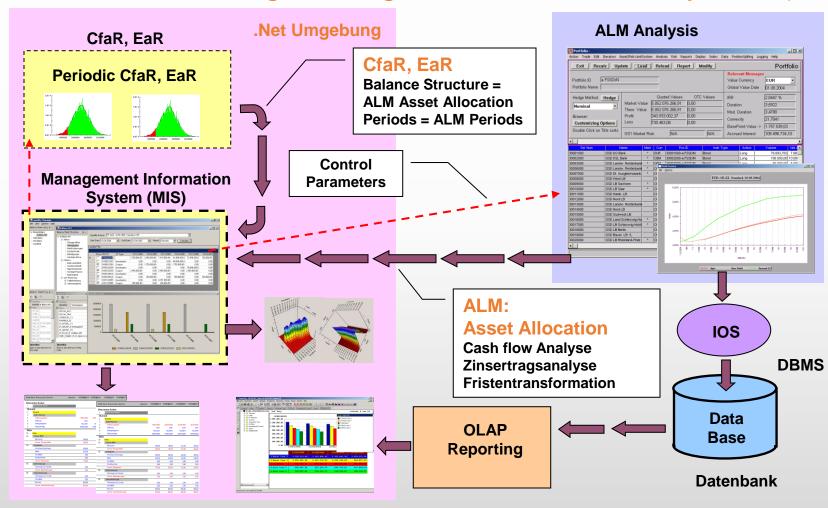
3D Verteilungsgrafik für Erwartungswert der Bilanz und für Aluminium Preis



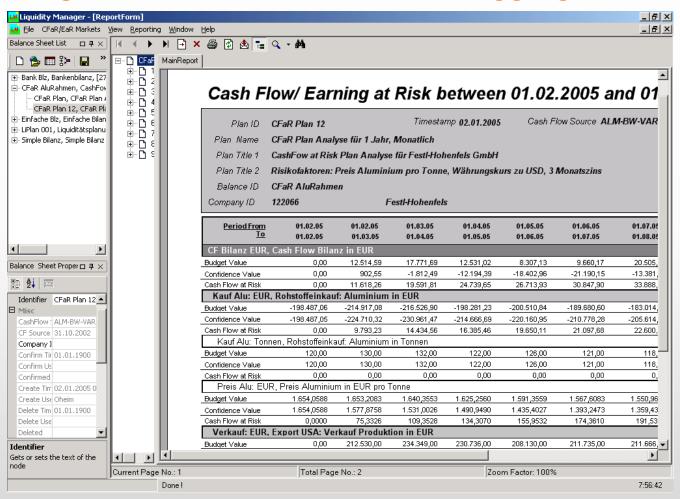
Implementierung als Microsoft .Net (C#) Anwendung



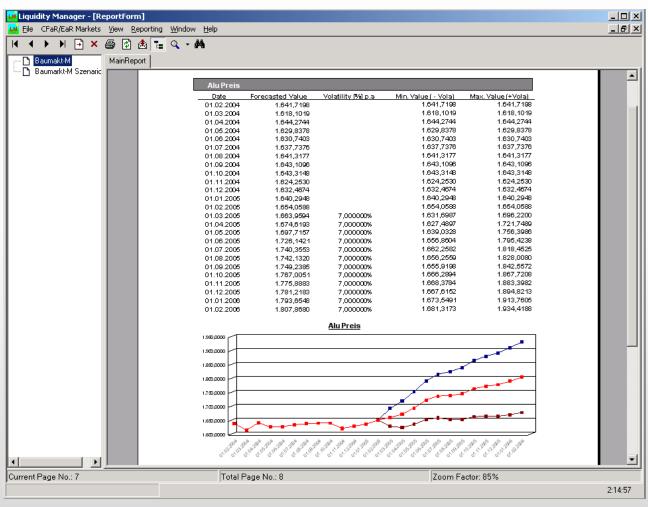
Implementierung als Microsoft .Net (C#) Anwendung



Integration in der Anwendung: Liquiditätsplanung



Integration der Anwendung: Management Information System (MIS)



Reporting von Bilanz-, Perioden- und Aggregationsergebnissen

Reporting für den Simulationsmarkt: Forecasted Aluminium Price

