
 

1 

 

 

 
Compliance Check Software System 

 
Ventsislav Nikolov 

 
Abstract: In this paper a set of functions for a compliance check language implemented in a limit software 
system is described. It is intended generally for the financial industry, but it can also be used for any other 
field requiring similar automatic observation of limits on the allowed operations. The basic system 
organization as well as the compliance check language constructs are described and clarified.  
 
Key words: Compliance Check, Rule Based Software System, Limit, Finance, Portfolio, Sub-portfolio 
 
 

INTRODUCTION 
 

In some organizations, companies and institutions some restrictions should be used 
and observed because of various reasons. This need could naturally emerge because of 
both common regulations and individual institution strategies. Such restrictions are often 
used in the financial software systems as a secure measure to control the investments and 
to have profitable financial portfolios [6]. Some investments should be restricted or 
forbidden because of their risk or unclear return or profitability. This means that the 
portfolio making, and operations are not arbitrary. For example, a given institution could 
prohibit the trade with precious metals or the amount of the government bonds should not 
exceed 80% of all investments. Building and handling a set of rules helps conforming 
specific investment strategies. Thus, the specific institution strategies could be adapted to 
the current environment and financial situation and the risk is taken into account. 

In this paper a software solution is described which allows the restrictions to be 
expressed as limits by a set of rules in a simplified ad-hoc language called Compliance 
Check Language (CCL). It consists data types to describe portfolios, sub-portfolios and 
numeric values. A variety of operations can be performed to calculate aggregate values 
like: sum, average, minimum, maximum and other mathematical functions on the specified 
fields of the selected objects. The language is flexible enough to create a variety of sub-
portfolios by different filters on objects fields’ values. The objects in the system are mainly 
portfolio positions. An example of a positions filter is: only the positions for a given country 
or given currency or both could be selected to belong to a new sub-portfolio. 

The CCL is implemented in a software library which functions can be called by 
arbitrary other applications. Within a given instance the library needs CCL limits 
expressions and the main set of positions which compose the data for which the limits 
should be checked. The limits should be given as a plain text and the positions are 
expressed as implementations of a given interface defined in the library. As the CCL is 
translated into production-based language the positions are represented and inserted into 
the system as production system facts. Thus, the whole input of the system is a simple 
string of the CCL statements and a set of production facts representing the portfolio 
positions. The output of the system is obtained by analysing the facts in the working 
memory of the production system and getting those which represent the limits. As the 
limits are in fact Boolean expressions, there are data fields in the facts representing the 
left-hand side and right-hand side of the limits comparisons. 
 
 
 
 
 
 



 

2 

 

 

 
Thus, it is also possible to indicate whether a given limit is not violated but close to 
violation and in this case a simple warning could be shown to the user. 

 
BASIC SYSTEM ORGANIZATION 

 

Every portfolio is considered as a set of positions. Every position comprises of fields 
that are properties and attributes with specific data type. For simplicity their definitions are 
considered the same for all available positions. Thus, the position is represented by a 
regular object with properties or dynamically calculated values by member functions. The 
system allows building of sets and subsets of positions and describing rules for the 
positions properties and attributes or their aggregates. The rules could be very complex 
including different mathematical formulas on the positions properties satisfying given 
limitations. It is also possible to express so called dynamic subsets which are created, 
destroyed and changes dynamically in the working memory. Thus, in some cases it is not 
possible to determine beforehand the sets and subsets residing in the memory. 

The limits are very convenient for implementation by a production based system. Any 
such a system could be used and in our case, it is a free Java based system called Drools 
[1]. The whole CCL expressions and statements are parsed using ANTLR [5] and 
translated into Drools production rules. The positions are loaded from a database and 
inserted in the working memory as production system facts. Providing logical support to 
the facts allows the system automatically to changes its logical inferences by adding and 
removing new facts [2, 3]. This also allows building an alert system that always resides in 
the memory and every new position leads to necessary local changes and logical 
inferences. When a new fact is added to the working memory the logical inference is 
performed only by the production system engine. When the fact is removed the system 
automatically restores the state before the position addition and if new facts have been 
added in the left-hand side of the rule they are removed by the system. 

CCL also supports so called sections. The main purpose of the sections is the 
expressions of the CCL to be logically organized in modules according to the regulations 
they present. The section starts with an opening and finishes with a closing tag. 
Technically all elements in a section are processed via last-in-first-out (LIFO) organization. 
The sections can be nested but cannot cross each other. This means that if the section A 
opens before section B the closing tag of section B must be before the closing of section 
A. 
 

COMPLIANCE CHECK LANGUAGE (CCL) 
 

When both the positions and the limits expressions are ready to be used the system 
performs two following stages. 

• First the sub-portfolios are created as different subsets from the main set and they are 

the input of the system. It is possible some of the positions in the main set not to 

participate in other subset. The subsets compose tree-like structure though sometimes 

a graph of positions groups can also be used. The tree or the graph structure is created 

by defining filters for one or more positions values. 

The values of the variables for the primitive data type ‘double’ in the system could 

be defined by arbitrary mathematical expressions with some positions fields. An 

example is shown in fig. 1 where the sum of 1.0 + Field_2 is calculated for all positions 

in sub-portfolio A. 



 

3 

 

 

The sum could also be expressed by more than one position fields, e.g: 

sum(Field_1 * Field_2 - Field_4). 

 
 

 
Fig.1 A sub-portfolio and an expression of the positions fields 

 
Both the portfolios and sub-portfolios are represented as sets in the CCL. They can be 

defined by one of the following ways: 

o By another set. In this case an alternative name is given for an existing set. 

o By a subset of another set. Here different criteria are defined to select positions of 

the set and the filters could be combined with logical ‘AND’ and ‘OR’ conjunctions. 

o By logical connections like AND, OR and NOT applied to other existing sets as well 

as brackets on complex expressions. 

The values of the primitive data types are expressed by the following aggregate 

functions on the specified sub-portfolios. 

o Set size. 

o Average value of a field of the positions for a given set. 

o Sum value of a field of the positions for a given set. 

o A single value of a field of a position. 

• Limits are defined comparing the values from the previous step. The results from the 

limits comparisons are the logical values TRUE or FALSE. It is possible to define a limit 

by existing limits using: 

o Another limit. Similarly, to the set the limit definition receives alternative name. 

o Logical connections like AND, OR and NOT applied to other existing limits. 

 

DYNAMIC SETS AND DYNAMIC LIMITS 
 

If a subset should be defined for every country, then dozens of lines code must be 
written. This situation could be avoided by stating that for every different country a set 
should be created automatically by the system. The subsets created in this way can be 
further separated according another field, for example currency. The obtained subsets can 
be further separated by other fields and as a result of that the tree structure as shown in 
fig. 2 is created. 
 

 
Fig. 2 Dynamic set from an ordinary set 

 
In order to define a dynamic set, an ordinary set must exist. Some of the fields of the 

positions in the subset must accept enumerable values. Such fields could be for example 



 

4 

 

 

countries and currencies. A new subset is created for every position whose country does 
not exist in the positions of already created dynamic subsets. Thus, by inserting or 
removing positions in the working memory new subsets can be dynamically created or 
destroyed. The whole tree structure of the dynamic subsets is identified by a string 
identifier called prefix. It is prefix because every single subset has its own name consisting 
of the prefix and the path in the tree where every new level is separated by the other with a 
separator. For example, if the separator is ‘_’ then “prefix2_GER_EUR” is a set 
corresponding to the left most leaf in the tree in fig. 2.  

When dynamic sets are created some limits, checks can be performed on them. For 
example, for every branch only specified sub-branches can be selected for the check. 
Such an example is shown in the fig. 3 where for every country only the positions with euro 
as a currency are checked by comparing calculated aggregate functions. 
 

 
Fig. 3 Limits check on dynamic set 

 

The limits definitions can be more complex if more than one dynamic set is used. In 
fig. 4 two ordinary sets are separated in the same way in two dynamic sets and in the 
check the corresponding nodes (sets) are used to calculate aggregate functions. Their 
results are together used to perform the considered checks. 
 

 
Fig. 4 Aggregate functions for corresponding dynamic sets are used to check a limit. If 

even one check fails, the whole limit check fails 
 

It is possible the aggregate functions for the nodes of the whole tree to be compared 



 

5 

 

 

to the corresponding aggregates of another similarly created tree of dynamic sets. The 
dynamic limits in this case are supposed to be defined in the same way for the sets being 
used. Otherwise non-existing sets will be searched, and the limit check fails. 

It is also possible the dynamic subsets for which the check success to be combined in 
a new ordinary set as shown in fig. 5. Thus, arbitrary aggregate functions and limit checks 
may be applied to the new set. 
 

 
Fig.5 If a check for dynamic sets succeeds for some of them then they can be 

merged in a new set 
 

All these possibilities of the CCL are designed to meet the needs of the formal 
definitions of the operation lows and regulations. 
 

CONCLUSIONS AND FUTURE WORK 
 

The tree based RETE algorithm implemented in the production system used for the 
CCL implementation leads to effective work of the system when new positions are inserted 
or removed. Thus, an alert system may be realized allowing a huge number of facts to 
resist permanently in the memory of the realized system – fig. 6 [4].  
 

 
Fig.6 Alert system 

 

The alert system is intended to be a multi-user software realization residing in a 
server machine. When some change in the database occurs, new positions are added to 
the working memory and local changes are performed only for the affected items. The 
other items are not changed, and the inference is done very fast. Similarly, when existing 
positions in the memory are removed only the facts which have been added in the right-



 

6 

 

 

hand side as a result of the matching of the removing facts in the left-hand side of the rule 
are removed. The other facts are not changed thus making the work of the system very 
effective. 

 
Acknowledgement: The work presented in this paper was supported within the Start-

up Scientific Project № 1, 2015, Technical University of Varna, “Research and 
development of algorithms for control of mobile robots under extreme conditions in virtual 
reality”. 
 

REFERENCES 
 

[1] Bali, M. Drools JBoss Rules 5.0 Developer's Guide. Develop rules-based business 
logic using the Drools platform. Packt Publishing, 2009. 

[2] Ligeza, A. Logical Foundations for Rule-Based Systems. Springer Science & 
Business Media, 2006. 

[3] Mayr, H. Database and Expert Systems Applications: Proceedings of the 12th 
International Conference, DEXA 2001 Munich, Germany, September 3 – 5, 2001. 

[4] Nikolov, S., V. Nikolov, A. Antonov. A constraint-based approach for analysing 
financial market operations. Proceedings of the 14th International Conference on 
Computer Systems and Technologies, ACM New York, NY, USA, ISBN: 978-1-4503-2021-
4, pp. 231 – 238. 

[5] Parr, T. The Definitive ANTLR Reference: Building Domain-Specific Languages. 
Pragmatic Bookshelf, 2007. 

[6] Strasberger, M. Risk Limit Systems and Capital Allocation in Financial Institutions. 
Banks and Bank Systems, Vol. 1, Iss. 4, 2006. 

 
ABOUT THE AUTHOR 
 
Dr. Ventsislav Nikolov 
Senior Software Developer 
Eurorisk Systems Ltd. 
31, General Kiselov Str., 9002 Varna, Bulgaria 
Е-mail: vnikolov аt eurorisksystems dot com 
 

 
 
 
 
  


