

1

Intelligent Application for Duplication Detection

Plamen Paskalev, Anatoliy Antonov

Abstract: The paper considers a realization of a software application, which performs identification of
duplicated records in a database, containing customer information. Some of the most important works in this
direction are overviewed. The selected algorithm is discussed. The problems and appropriate solutions due
to handling of multi-language information are listed. The developed application, built using CLIPS engine and
rule scripts is debated.
Keywords: Duplicate detection, data mining, record linkage, edit distance algorithm, Intelligent Interfaces,
Artificial Intelligence, CLIPS, Computer Systems and Technologies

INTRODUCTION
It is common case in the real life, that the databases contain records which points to the
same object (book, person, etc.) but are not syntactically identical. Using of abbreviations
or different front-office systems, integration of multiple data sources or just typographical
errors and misspellings are the main reasons for this kind of problems with database
content. This is a serious problem because it has harmful effects on the statistics, reporting
features, preventing data-mining algorithms from discovering regularities in the data. For
example, the marketing specialists in a large company need to know who their customers
are, and they must have an extraordinarily clean customer list in order to communicate
with them. Using wrong or misspelled addresses or sending multiple letters to the same
person is not acceptable. Some other areas, where data, clear of this type of problems is
crucial are customer matching, marketing, merging different sources of data, tracking retail
sales, medical records, library records, etc.
This article describes the approach, used for realization of duplicate detection in a
medium-sized international bank. The application is realized using CLIPS engine. The
analysis of the data records and algorithms for comparison and determining of potential
duplicates are realized as CLIPS rules. The main problems in the realization, like
supporting of different languages, handling of language-specific special symbols, fast
response of the system, etc., as long as the selected technology and methodology are
discussed.

DUPLICATION FINDING
The problem with finding and fixing of duplicated data is typically handled using manual
data cleaning process. This is a rather tiresome process, especially in larger databases.
So, there exists many works, concentrated on the way of using specially designed
software for performing of this task. Some works have addressed the problem of
identifying duplicate records, referred to as record linkage [1,2], the merge/purge problem
[3], duplicate detection [4,5], hardening soft databases [6], reference matching [7], and
entity-name clustering and matching [8]. For determining of the level of likeness standard
string similarity metrics such as edit distance [9] or vector-space cosine similarity [10] are
used. Investigations in the using of pairing functions [8, 5, 11] that combine multiple
standard metrics were made. Accurate similarity computations require adapting string
similarity metrics for each field of the database with respect to the particular data domain.
Trainable similarity measures [12] were suggested instead of hand-tuning a distance
metric for each field.
The problem of identifying duplicate records in databases was originally identified by
Newcombe [1] as record linkage in the context of identifying medical records of the same
individual from different time periods. Fellegi and Sunter [19] developed a formal theory for
record linkage and offered statistical methods for estimating matching parameters and
error rates. In his work in statistics, Winkler proposed using EM-based methods for

2

obtaining optimal matching rules [2]. That work was highly specialized for the domain of
census records and used hand-tuned similarity measures. Hernandez and Stolfo [3]
developed the sorted neighborhood method for limiting the number of potential duplicate
pairs that require distance computation, while McCallum et. al. proposed the canopies
clustering algorithm [16] for the task of matching scientific citations. Monge and Elkan
developed the iterative merging algorithm based on the union-find data structure [18] and
showed the advantages of using a string distance metric that allows gaps [17]. Cohen et.
al. [6] posed the duplicate detection task as an optimization problem, proved NP-hardness
of solving the problem optimally, and proposed a nearly linear algorithm for finding a local
optimum using the union-find data structure. Cohen and Richman have proposed an
adaptive framework for duplicate detection that combines multiple similarity metrics [8].
Sarawagi and Bhamidipaty [5] and Tejada et. al. [11] developed systems that employ
active learning methods for selecting record pairs that are informative for training the
record-level classifier that combines similarity estimates from multiple fields across
different metrics.

SOFTWARE SOLUTION

1. APPLICATION’S TASKS

The discussed application realizes duplication detection in a heterogeneous set of data
bases, belonging to sub-banks of a medium-sized European bank. The data, collected in
the independent sub-banks (institutes) contains information for customers of the
corresponding institute only. The data has been entered using different front-office
systems, in different software realizations. The information in the different institutes is
written down using different European languages, using the corresponding special
symbols, specific for the certain language (Ö, Ä, Ü, ß, š, r, í, á, c, e etc.).
The main goal of the application is to collect and clean the data for the bank customers, to
create a proper hierarchy of the database and to eliminate potential duplicates in the
customer’s information.
The standardization of the customer’s data and the structural improvement are essential
for building of proper view on the company customers and portfolio as long as for the
computation of credit limits for the customers. The task of the customer unification consists
in the identification and allocation of duplications based on thorough analysis of the
information of a limited number of data fields, comparing degree of similarity of the data.
After production of the duplication lists, they are sent to the corresponding institutes and
responsible persons. The clearing of the duplicates is realized from the responsible
persons according to their authorization rights.

2. REALIZATION

The duplication finding module was realized as part of a larger WEB application,
responsible for maintaining the data, collected from different institutes. The existing works
in the area of duplication finding were investigated; the best approaches for this case were
selected and implemented. The data is received in 3 different ways: via file transfer, which
updates database during overnight batch mode, via WEB services and via GUI interface.
One important requirement is the time for response. This is the reason why the speed of
implemented algorithms has very high priority.
First stage of the analysis is check of duplications on column level. The analysis depends
on the contents of the data fields. Comparing rules, calculating the level of similarity are
applied. For each data field for a pair of customers a degree of similarity is determined
using the rules. In case the content is the same, the result is 100%, similar fields are
scored with result < 100%. The final result is determined after weighting with consideration
of different criteria defining the importance of the fields.

3

In the following sections the main steps in the realization are discussed in more details.
Finally, the technical aspects of the realization are overviewed.

a) Collecting the data
The application performs analysis of a previously defined subset of data columns from
customer’s database. The name, address, postal code, sex, birth date is being compared
in an attempt to find duplicate records. A weight is set to each of the columns, which
defines the importance of the column in the general duplication search process. The data
records in the data window are picked out over fast data base accesses using binary
indices from the data base. One important requirement is that the original data must not be
changed. For this reason, the reformatting of the fields, included in the process of
identification of customer dupes is done using additional data tables.

b) Preparations of data
Replacing local special characters

Replacing language specific special characters is essential, because the input data can
contain either the special symbols or their well-known substitutes. All local special
characters from used languages are represented as it is shown in table 1. A phonetic
substitution takes place. In the final result all character strings can be represented into all
data fields over the 7-bit ASCII Code. In this way the rules will be executed faster and
they will be simplified because there is no need to handle these special characters.

Table 1: Special symbols in European Countries and their

conversion Legal forms substitution
The legal form is usually a component of the name of the companies. There exist different
abbreviations of legal forms as well. Below are some examples of German / Austrian legal
forms:

 "GmbH" "GesmbH" "mbH" "m.b.H." "CO GmbH" "GmbH & Co KG" "m.b.H. & Co. KG"
"GmbH & Co." "GmbH&Co.KG" "Co. KEG" "Ltd" "m.b.H.Nfg KG" "...gesellschaft mbH"
The legal form is also language-dependent, i.e. in different languages different legal forms
are used (see table 2). The legal forms are standardized during the mapping process and
converted as synonyms to a sample form.

Country Company Name Abbrev. Country Company Name Abbrev.

Germany Aktiengesellschaft AG Czech rep. akciová spolecnost A.S.
Germany Eingetragene

Erwerbsgesellschaft
Professional Partnership

EEG Czech rep. Spolecnost s rucením
omezeným

Spol
S.R.O.

Germany Kommanditgesellschaft. KG Czech rep. Verejna obchodni
spolecnost

V.O.S.

Germany Offene Handelsgesellschaft.
Partnership

OHG Czech rep. Komanditni spolecnost K.S.

Germany See GmbH GesmbH Hungary Betéti társaság Bt.
Germany Gesellschaft mit beschränkter GmbH Hungary Korlátolt felelosségu Kft.

Country Character Substitution Country Character Substitution

Croatia C ch Austria / Germany Ü ue
Croatia Š sh Slovenia c Ch
Czech republic C ch Slovenia ž Dz
Czech republic Ž dz Malta g J
Austria / Germany Ä ae Malta gh H
Austria / Germany Ö oe Slovakia ä Ae
Austria / Germany ß ss Slovakia ž Dz

4

 Haftung társaság

Croatia dionicko društvo D.D. Hungary Közkereseti társaság Kkt.
England Company Limited by

Guarantee
Ltd. Hungary Közös vállalat Kv.

England Private limited company Ltd. Hungary Részvénytársaság Rt.
England Public limited company Plc.

Table 2: Legal Forms in European Countries

Removing of non-relevant words
Some words or parts of compound words carry not too important information content and
can be removed after assignment of small penalty (e.g. only 2%) from the text. Thus, the
relevant text contents have greater importance, which contribute to the duplication
identification better.
Example: Comparison of "steel processing company m.b.h" with "steel processing
GesmbH" gives level of similarity 1.92 equal words at maximum number of 2 words, the
similarity coefficient is 96.00% = 1.92/2. The 4% penalty is result of the deletion of
"society" from the first character string and the replacement of "m.b.h" and "GesmbH" from
both strings to "GmbH".

c) Edit distance algorithm
String edit distance is the usual way of defining the degree of similarity between two
strings. However, in order to achieve reasonable accuracy, most real problems require the
use of extended sets of edit rules with associated costs that are tuned specifically to each
data set. Edit distances are calculated by using table of string edit costs. This table
implicitly contains the edit cost of every permutation of edit rules required to transform one
string into another. The table is a two-dimensional array whose values are calculated from
the upper left diagonally to the bottom right. The upper left corner is always initialized to
zero since there is no cost to transform the null string into the null string. The edit distance
at each point is calculated from the surrounding values to the left and above the current
position. These surrounding values represent the minimum edit distance required to reach
that particular position within the two strings. The edit cost to obtain the current position
from one of the surrounding positions is first calculated and then added to the value at that
surrounding position. This is done because an edit rule is required to move from the
previous position to the current one. Performing these operations produces three edit
distances. The minimum edit distance is assigned to the current position. This algorithm
guarantees that the minimum edit distance will always be the value at the lower right
corner.
The best-known character-based string similarity metric is Levenshtein distance, defined
as the minimum number of insertions, deletions or substitutions necessary to transform
one string into another [12]. Needleman and Wunsch [13] extended the model to allow
contiguous sequences of mismatched characters, or gaps, in the alignment of two strings,
and described a general dynamic programming method for computing edit distance. While
character-based metrics work well for estimating distance between strings that differ due to
typographical errors or abbreviations, they become computationally expensive and less
accurate for larger strings. The vector-space model [15] of text avoids this problem by
viewing strings as “bags of tokens” and disregarding the order in which the tokens occur in
the strings.
In our realization the comparison algorithm implemented by Reinhard Schneider and Chris
Sander [20] for comparison of protein sequences, but implemented to compare two ASCII
strings is used. It was extended with including of several features and assignment of
weights and bonuses as long as introducing of similarity tables (phonetic similarity,
characters, located near to each other on the keyboard, etc.) as it is shown in table 3.

5

Delete Penalty Remark Replace Score Remark

Phonetic
similarity

-0,45 a, e, u, ... Same Indication 1,00

Consonants -0,40 r, t, p, s, ... Same type 0,20 Phon, Cons, Numb.
Numbers -0,70 0,1,2,3,4,5,6,7,8,9 Different Type 0,15 Phon, Cons, Numb.
Blank “ ” -0,40 “ ” Number 0,25 2  3
Dot “.” -0,65 “.” Small – Capital 0,80 “a”“A”,

“A”“a”,
Comma “,” -0,45 “,” Adjacent keys on

the keyboard
0,40 “a”, “d”, “w” or “x”

instead “s”

Other -0,20 Phonetic
Similarity

0,45 For example “t”-“d”,
“v”-“f”, “2”-“3”

Repeated
deletion

-0,30 Deleting of symbols
in a row

Similar
characters string

0,20 For example
“abcde”-“cdexz”

Table 3: Penalties and scores in similarity search algorithm realization

d) Sequence of the words
The measurement of the level of similarity of isolated words in two-character strings is not
enough in many cases. The words in the sentence can be in different order. The algorithm
must be able to find whether the replacing of the order of the words will give higher level of
similarity. Our realization divides the sentence in words and investigates potential disorder
also. For example, the comparison between "Delphi automobile system" and
"automobile systems Delphi" gives a level of similarity 2.8 equal words from maximum
number of 3 words, the similarity coefficient is 93.33% = 2.8/3. The 6.67% are lost
because of penalty for the unequal order of the otherwise same words. The comparison of
the isolated words is realized using the algorithm discussed above. For example, mistyping
in the word of "automobile" and input as "Automibile" results in 2.78 equal words and a
similarity coefficient of 92,53%.

e) Address analysis
The address field analysis is complicated because of the not clear format used. The task of
the allocation of the street name and number in the data field road is realized in the
following steps:

o Determining of the separate parts (words) of the address data field.
o The word which contains numbers presumably contains street number
o This word is treated separately as street number; the remaining character string

should contain the street name.
o The standardisation of the street name includes standardization of similar terms,

which replaced synonyms to road, place, etc. in different languages. An example
of synonyms replacing in German is shown below:

1. "strasse" <---"str" "weg" "gasse" "gs" "allee"
2. "platz" <---"pl" "markt" "park" "ring" "anlage" "garten"
3. "ort" <---"dorf","bach","berg","burg","graben","siedlung","laende","staette"

f) Clustering of the data

The important idea which was applicable in the discussed approach is, that the analysis is
done over several data fields (with different priority). Thus, the size of the data screen can
be kept small due to implementing ‘multi-pass approach’ [3], executing several
independent runs using different keys. The amount of data records to be compared is
requested out from the data base. The following conditions must be fulfilled during this
process:

6

o All relevant data fields for the dupe search are kept in the data base in their
original form and in modified form, where all the preparation tasks discussed
above were executed. On the modify form a set of binary indices is applied. The
modified form is prepared from the original form during overnight batch
preparation mode and it is used during the next day.

o An adjustable logical function is built using SQL instruction on the columns of the
modified form. The logical function determines the size of the scanning window
based on the importance of the data fields and using the multi-pass approach.

o It is expected that the scanning window will contain between 200 to 300 data
records. If the number of data records becomes too large, then the logical
function calculating the selection limit can be changed. An example of such
logical function is given below:

Select row if
o at least one of the fields with priority 1 is equal to the searched value or
o at least two fields with priority 2 are equal or
o at least three fields with priority 3, 4, 5 or 6 are equal to the corresponding value.

The total similarity is calculated based on the similarity levels in every column using
formula like the one below:

Total Similarity = 1 –  (1 - SimilarityCoefficient(Field i))

3. EXAMPLE OF POTENTIAL DUPLICATION

An example of search of potential customer dupes is given in the following example (table
4). The column priority contains importance of the fields for the total result. The result from
the comparison of the individual fields is registered in the column similarity. The total
result contains the result of the weight formula discussed above.

Data Field Sample
record

Comparison set Priority Similarity Coefficient

First Name Anna Anna 1 100,00%
Name Mustermann Müller 1 6,00%
Customer ID 2001001954

85
300200946734 2 3,00%

Birth Date 22.08.1981 22.08.1981 2 100,00%
Zip Code 1234 1234 4 100,00%
City Musterdorf Musterdorf 4 100,00%
Address Parkstrasse

24
Parkstrasse 24 3 100,00%

Register
Number

456123 456123 2 100,00%

 Total Similarity 71,65%

Table 4: Duplication Example

Flexible assignment of weights and using of rules for non-linear addition of the coefficients
are used. AI aggregates values for data fields which meaning is overlapped (post code
and city for example).

4. TECHNICAL REALIZATION AND CONFIGURATION

The technical realization of the duplicate detection for the discussed customer database is
based on the following prerequisites:

7

The data fields of a potential duplicate data are inputted into the system via Web interfaces
or via data import. After converting of the data in the modified form discussed above, the
logic for the duplicate detection in the application server is activated.
A set of dynamically-created SQL requests is sent to the database server, picking out the
data records from the scanning window. This operation uses specially created binary
indices which met the substantial performance requirements of this task. The data records
in their modified form are returned.
The comparison of the individual records with the potential duplicate one is realized in a
module built using the CLIPS rule based engine. All methods and rules for the comparison
of the individual fields and for the total comparison are developed as CLIPS rules.
Algorithmic parts are implemented directly in Java and bound to CLIPS. Using of CLIPS
rules provides maximal flexibility and the ability for further adjustments and development of
the functionality.
The result from the comparison of the data records is a similarity coefficient, in form of
percentage (0 <= SC <= 100). Categorization as duplication can take place manually or
automatically based on the list of the similarities and the threshold value. A manual
confirmation of the duplications list is necessary for the avoidance of errors in any case. The
configuring of the process of the identification of duplicates is very easy because the
definition of the rules is stored in plain language in CLIPS-module files. The engine loads
the script file and activates the rules.
The penalty and bonus values of "Edit Distance" algorithm, discussed above are also
subject of adjustment using test data. They are also set in CLIPS file, so the change of
these values without any changes in the module is possible.
Some other configurable settings include the keyboard layout for adjacent keys and the list
of phonetically similar characters, threshold values and penalties for recognition and
replacement of synonyms and deletion of non-relevant words, lists for corresponding legal
forms and their abbreviations, lists of standardized address formats, address parts and their
abbreviations in different languages, etc.

CONCLUSIONS AND FUTURE WORK
The discussed module was developed and tested using sample data. The following
conclusions were made:

o The preparation tasks, involving data modification must be performed on the
database server. This approach gives better performance, compared to the one with
performing transformations using the CLIPS engine.

o To reach the needed performance in the real-time, the additional databases and the
binary indices must be prepared during the previous night batch mode.

o Using of CLIPS rules provides maximum flexibility for adjustment of the algorithm.
o The edit distance algorithm must be implemented as a separated module in C to

achieve maximum performance.
o Future development concerns practical implementations in following directions:
o Analysis and adjustments of the score and penalty table for the edit-distance

algorithm. Collecting of nomenclature data for proper handling of input from other
languages (French, Italian) and alphabets (Cyrillic, etc.)

REFERENCES

[1] H. B. Newcombe, J. M. Kennedy, S. J. Axford, and A. P. James. Automatic linkage of vital
records. Science, 130:954–959, 1959.
[2] W. E. Winkler. The state of record linkage and current research problems. Technical report,
Statistical Research Division, U.S. Bureau of the Census, Wachington, DC, 1999.
[3] M. A. Hernandez and S. J. Stolfo. The merge/purge problem for large databases. In
Proceedings of the 1995 ACM SIGMOD, pages 127–138, San Jose, CA, May 1995.

8

[4] A. E. Monge and C. P. Elkan. An efficient domain-independent algorithm for detecting
approximately duplicate database records. In Proceedings of the SIGMOD 1997 Workshop on
Research Issues on Data Mining and Knowledge Discovery, pages 23–29, Tuscon, AZ, May 1997.
[5] S. Sarawagi and A. Bhamidipaty. Interactive deduplication using active learning. In Proceedings
of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD-2002), Edmonton, Alberta, 2002.
[6] W. W. Cohen, H. Kautz, and D. McAllester. Hardening soft information sources. In Proceedings
of the Sixth International Conference on Knowledge Discovery and Data Mining (KDD-2000),
Boston, MA, Aug. 2000.
[7] A. K. McCallum, K. Nigam, and L. Ungar. Efficient clustering of high-dimensional data sets with
application to reference matching. In Proceedings of the Sixth International Conference on
Knowledge Discovery and Data Mining (KDD-2000), pages 169–178, Boston, MA, Aug. 2000.
[8] W. W. Cohen and J. Richman. Learning to match and cluster large high-dimensional data sets
for data integration. In Proceedings of the Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-2002), Edmonton, Alberta, 2002.
[9] D. Gusfield. Algorithms on Strings, Trees and Sequences. Cambridge Univ. Press, NY, 1997.
[10] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. ACM Press, NY, 1999.
[11] S. Tejada, C. A. Knoblock, and S. Minton. Learning domain-independent string transformation
weights for high accuracy object identification. In Proceedings of the Eighth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD-2002), Edmonton,
Alberta, 2002.
[12] Bilenko M., Mooney R. Adaptive Duplicate Detection Using Learnable String Similarity
Measures In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining(KDD-2003), Washington DC, pp.39-48, August, 2003
[13] S. B. Needleman and C. D. Wunsch. A general method applicable to the search for similarities
in the amino acid sequences of two proteins. Journal of Molecular Biology, 48:443–453, 1970.
[14] Ristad, E. S., and Yianilos, P.N. Learning string edit distance. Research Report CS-TR-532-
96, Department of Computer Science, Princeton University, Princeton, NJ, October 1996, Revised
(October, 1997).
[15] J.J. Zhu and L.H. Ungar. String Edit Analysis for Merging Databases. In proceedings
of International Conference on Knowledge Discovery and Data Mining(KDD) 2000.
[16] A. K. McCallum, K. Nigam, and L. Ungar. Efficient clustering of high-dimensional data sets
with application to reference matching. In Proceedings of the Sixth International Conference on
Knowledge Discovery and Data Mining (KDD-2000), pages 169–178, Boston, MA, Aug. 2000.
[17] A. Monge and C. Elkan. The field-matching problem: algorithm and applications. In
Proceedings of the 2nd Conference on Knowledge Discovery and Data Mining, August 1996.
[18] A. Monge and C. Elkan. An efficient domain-independent algorithm for detecting approximately
duplicate database records. In The proceedings of the SIGMOD 1997 workshop on data mining
and knowledge discovery, May 1997.
[19] I. P. Fellegi and A. B. Sunter. A theory for record linkage. Journal of the American Statistical
Association, 64:1183–1210, 1969.
[20] C. Sander and R. Schneider, "Database of homology-derived protein structures and the
structural meaning of sequence alignment," Proteins, vol. 9, no. 1, pp. 56--58, 1991.

ABOUT THE AUTHORS
Eurorisk Systems Ltd.
31, General Kiselov Str.
9002 Varna, Bulgaria

Plamen Paskalev
E-Mail: ppaskalev at eurorisksystems dot com
Dr. Anatoliy Antonov
Е-mail: antonov at eurorisksystems dot com

mailto:ppaskalev@eurorisksystems.com

