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Abstract: The paper considers a realization of a software application, which performs identification of 
duplicated records in a database, containing customer information. Some of the most important works in this 
direction are overviewed. The selected algorithm is discussed. The problems and appropriate solutions due 
to handling of multi-language information are listed. The developed application, built using CLIPS engine and 
rule scripts is debated. 
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INTRODUCTION 
It is common case in the real life, that the databases contain records which points to the 
same object (book, person, etc.) but are not syntactically identical. Using of abbreviations 
or different front-office systems, integration of multiple data sources or just typographical 
errors and misspellings are the main reasons for this kind of problems with database 
content. This is a serious problem because it has harmful effects on the statistics, reporting 
features, preventing data-mining algorithms from discovering regularities in the data. For 
example, the marketing specialists in a large company need to know who their customers 
are, and they must have an extraordinarily clean customer list in order to communicate 
with them. Using wrong or misspelled addresses or sending multiple letters to the same 
person is not acceptable. Some other areas, where data, clear of this type of problems is 
crucial are customer matching, marketing, merging different sources of data, tracking retail 
sales, medical records, library records, etc. 
This article describes the approach, used for realization of duplicate detection in a 
medium-sized international bank. The application is realized using CLIPS engine. The 
analysis of the data records and algorithms for comparison and determining of potential 
duplicates are realized as CLIPS rules. The main problems in the realization, like 
supporting of different languages, handling of language-specific special symbols, fast 
response of the system, etc., as long as the selected technology and methodology are 
discussed. 

 

DUPLICATION FINDING 
The problem with finding and fixing of duplicated data is typically handled using manual 
data cleaning process. This is a rather tiresome process, especially in larger databases. 
So, there exists many works, concentrated on the way of using specially designed 
software for performing of this task. Some works have addressed the problem of 
identifying duplicate records, referred to as record linkage [1,2], the merge/purge problem 
[3], duplicate detection [4,5], hardening soft databases [6], reference matching [7], and 
entity-name clustering and matching [8]. For determining of the level of likeness standard 
string similarity metrics such as edit distance [9] or vector-space cosine similarity [10] are 
used. Investigations in the using of pairing functions [8, 5, 11] that combine multiple 
standard metrics were made. Accurate similarity computations require adapting string 
similarity metrics for each field of the database with respect to the particular data domain. 
Trainable similarity measures [12] were suggested instead of hand-tuning a distance 
metric for each field. 
The problem of identifying duplicate records in databases was originally identified by 
Newcombe [1] as record linkage in the context of identifying medical records of the same 
individual from different time periods. Fellegi and Sunter [19] developed a formal theory for 
record linkage and offered statistical methods for estimating matching parameters and 
error rates. In his work in statistics, Winkler proposed using EM-based methods for 
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obtaining optimal matching rules [2]. That work was highly specialized for the domain of 
census records and used hand-tuned similarity measures. Hernandez and Stolfo [3] 
developed the sorted neighborhood method for limiting the number of potential duplicate 
pairs that require distance computation, while McCallum et. al. proposed the canopies 
clustering algorithm [16] for the task of matching scientific citations. Monge and Elkan 
developed the iterative merging algorithm based on the union-find data structure [18] and 
showed the advantages of using a string distance metric that allows gaps [17]. Cohen et. 
al. [6] posed the duplicate detection task as an optimization problem, proved NP-hardness 
of solving the problem optimally, and proposed a nearly linear algorithm for finding a local 
optimum using the union-find data structure. Cohen and Richman have proposed an 
adaptive framework for duplicate detection that combines multiple similarity metrics [8]. 
Sarawagi and Bhamidipaty [5] and Tejada et. al. [11] developed systems that employ 
active learning methods for selecting record pairs that are informative for training the 
record-level classifier that combines similarity estimates from multiple fields across 
different metrics. 

 
SOFTWARE SOLUTION 

 
1. APPLICATION’S TASKS 

The discussed application realizes duplication detection in a heterogeneous set of data 
bases, belonging to sub-banks of a medium-sized European bank. The data, collected in 
the independent sub-banks (institutes) contains information for customers of the 
corresponding institute only. The data has been entered using different front-office 
systems, in different software realizations. The information in the different institutes is 
written down using different European languages, using the corresponding special 
symbols, specific for the certain language (Ö, Ä, Ü, ß, š, r, í, á, c, e etc.). 
The main goal of the application is to collect and clean the data for the bank customers, to 
create a proper hierarchy of the database and to eliminate potential duplicates in the 
customer’s information. 
The standardization of the customer’s data and the structural improvement are essential 
for building of proper view on the company customers and portfolio as long as for the 
computation of credit limits for the customers. The task of the customer unification consists 
in the identification and allocation of duplications based on thorough analysis of the 
information of a limited number of data fields, comparing degree of similarity of the data. 
After production of the duplication lists, they are sent to the corresponding institutes and 
responsible persons. The clearing of the duplicates is realized from the responsible 
persons according to their authorization rights. 

 
2. REALIZATION 

The duplication finding module was realized as part of a larger WEB application, 
responsible for maintaining the data, collected from different institutes. The existing works 
in the area of duplication finding were investigated; the best approaches for this case were 
selected and implemented. The data is received in 3 different ways: via file transfer, which 
updates database during overnight batch mode, via WEB services and via GUI interface. 
One important requirement is the time for response. This is the reason why the speed of 
implemented algorithms has very high priority. 
First stage of the analysis is check of duplications on column level. The analysis depends 
on the contents of the data fields. Comparing rules, calculating the level of similarity are 
applied. For each data field for a pair of customers a degree of similarity is determined 
using the rules. In case the content is the same, the result is 100%, similar fields are 
scored with result < 100%. The final result is determined after weighting with consideration 
of different criteria defining the importance of the fields. 
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In the following sections the main steps in the realization are discussed in more details. 
Finally, the technical aspects of the realization are overviewed. 

a) Collecting the data 
The application performs analysis of a previously defined subset of data columns from 
customer’s database. The name, address, postal code, sex, birth date is being compared 
in an attempt to find duplicate records. A weight is set to each of the columns, which 
defines the importance of the column in the general duplication search process. The data 
records in the data window are picked out over fast data base accesses using binary 
indices from the data base. One important requirement is that the original data must not be 
changed. For this reason, the reformatting of the fields, included in the process of 
identification of customer dupes is done using additional data tables. 

b) Preparations of data 
Replacing local special characters 

Replacing language specific special characters is essential, because the input data can 
contain either the special symbols or their well-known substitutes. All local special 
characters from used languages are represented as it is shown in table 1. A phonetic 
substitution takes place. In the final result all character strings can be represented into all 
data fields over the 7-bit ASCII Code.  In this way the rules will be executed faster and  
they will be simplified because there is no need to handle these special characters. 

 
 
 
 
 
 
 
 

Table 1: Special symbols in European Countries and their 

conversion Legal forms substitution 
The legal form is usually a component of the name of the companies. There exist different 
abbreviations of legal forms as well. Below are some examples of German / Austrian legal 
forms: 

   "GmbH" "GesmbH" "mbH" "m.b.H." "CO GmbH" "GmbH & Co KG" "m.b.H. & Co. KG" 
"GmbH & Co." "GmbH&Co.KG" "Co. KEG" "Ltd" "m.b.H.Nfg KG" "...gesellschaft mbH" 
The legal form is also language-dependent, i.e. in different languages different legal forms 
are used (see table 2). The legal forms are standardized during the mapping process and 
converted as synonyms to a sample form. 

Country Company Name Abbrev. Country Company Name Abbrev. 

Germany Aktiengesellschaft AG Czech rep. akciová spolecnost A.S. 
Germany Eingetragene 

Erwerbsgesellschaft 
Professional Partnership 

EEG Czech rep. Spolecnost s rucením 
omezeným 

Spol 
S.R.O. 

Germany Kommanditgesellschaft. KG Czech rep. Verejna obchodni 
spolecnost 

V.O.S. 

Germany Offene Handelsgesellschaft. 
Partnership 

OHG Czech rep. Komanditni spolecnost K.S. 

Germany See GmbH GesmbH Hungary Betéti társaság Bt. 
Germany Gesellschaft mit beschränkter GmbH Hungary Korlátolt felelosségu Kft. 

Country Character Substitution Country Character Substitution 

Croatia C ch Austria / Germany Ü ue 
Croatia Š sh Slovenia c Ch 
Czech republic C ch Slovenia ž Dz 
Czech republic Ž dz Malta g J 
Austria / Germany Ä ae Malta gh H 
Austria / Germany Ö oe Slovakia ä Ae 
Austria / Germany ß ss Slovakia ž Dz 
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 Haftung   társaság  

Croatia dionicko društvo D.D. Hungary Közkereseti társaság Kkt. 
England Company Limited by 

Guarantee 
Ltd. Hungary Közös vállalat Kv. 

England Private limited company Ltd. Hungary Részvénytársaság Rt. 
England Public limited company Plc.    

Table 2: Legal Forms in European Countries 
 

Removing of non-relevant words 
Some words or parts of compound words carry not too important information content and 
can be removed after assignment of small penalty (e.g. only 2%) from the text. Thus, the 
relevant text contents have greater importance, which contribute to the duplication 
identification better. 
Example: Comparison of "steel processing company m.b.h" with "steel processing 
GesmbH" gives level of similarity 1.92 equal words at maximum number of 2 words, the 
similarity coefficient is 96.00% = 1.92/2. The 4% penalty is result of the deletion of 
"society" from the first character string and the replacement of "m.b.h" and "GesmbH" from 
both strings to "GmbH". 

c) Edit distance algorithm 
String edit distance is the usual way of defining the degree of similarity between two 
strings. However, in order to achieve reasonable accuracy, most real problems require the 
use of extended sets of edit rules with associated costs that are tuned specifically to each 
data set. Edit distances are calculated by using table of string edit costs. This table 
implicitly contains the edit cost of every permutation of edit rules required to transform one 
string into another. The table is a two-dimensional array whose values are calculated from 
the upper left diagonally to the bottom right. The upper left corner is always initialized to 
zero since there is no cost to transform the null string into the null string. The edit distance 
at each point is calculated from the surrounding values to the left and above the current 
position. These surrounding values represent the minimum edit distance required to reach 
that particular position within the two strings. The edit cost to obtain the current position 
from one of the surrounding positions is first calculated and then added to the value at that 
surrounding position. This is done because an edit rule is required to move from the 
previous position to the current one. Performing these operations produces three edit 
distances. The minimum edit distance is assigned to the current position. This algorithm 
guarantees that the minimum edit distance will always be the value at the lower right 
corner. 
The best-known character-based string similarity metric is Levenshtein distance, defined 
as the minimum number of insertions, deletions or substitutions necessary to transform 
one string into another [12]. Needleman and Wunsch [13] extended the model to allow 
contiguous sequences of mismatched characters, or gaps, in the alignment of two strings, 
and described a general dynamic programming method for computing edit distance. While 
character-based metrics work well for estimating distance between strings that differ due to 
typographical errors or abbreviations, they become computationally expensive and less 
accurate for larger strings. The vector-space model [15] of text avoids this problem by 
viewing strings as “bags of tokens” and disregarding the order in which the tokens occur in 
the strings. 
In our realization the comparison algorithm implemented by Reinhard Schneider and Chris 
Sander [20] for comparison of protein sequences, but implemented to compare two ASCII 
strings is used. It was extended with including of several features and assignment of 
weights and bonuses as long as introducing of similarity tables (phonetic similarity, 
characters, located near to each other on the keyboard, etc.) as it is shown in table 3. 
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Delete Penalty Remark Replace Score Remark 

Phonetic 
similarity 

-0,45 a, e, u, ... Same Indication 1,00  

Consonants -0,40 r, t, p, s, ... Same type 0,20 Phon, Cons, Numb. 
Numbers -0,70 0,1,2,3,4,5,6,7,8,9 Different Type 0,15 Phon, Cons, Numb. 
Blank “ ” -0,40 “ ” Number 0,25 2  3 
Dot “.” -0,65 “.” Small – Capital 0,80 “a”“A”,    

“A”“a”, 
Comma “,” -0,45 “,” Adjacent keys on 

the keyboard 
0,40 “a”, “d”, “w” or “x” 

instead “s” 

Other -0,20  Phonetic 
Similarity 

0,45 For example “t”-“d”, 
“v”-“f”, “2”-“3” 

Repeated 
deletion 

-0,30 Deleting of symbols 
in a row 

Similar 
characters string 

0,20 For example 
“abcde”-“cdexz” 

Table 3: Penalties and scores in similarity search algorithm realization 
 

d) Sequence of the words 
The measurement of the level of similarity of isolated words in two-character strings is not 
enough in many cases. The words in the sentence can be in different order. The algorithm 
must be able to find whether the replacing of the order of the words will give higher level of 
similarity. Our realization divides the sentence in words and investigates potential disorder 
also. For example, the comparison between "Delphi automobile system" and 
"automobile systems Delphi" gives a level of similarity 2.8 equal words from maximum 
number of 3 words, the similarity coefficient is 93.33% = 2.8/3. The 6.67% are lost 
because of penalty for the unequal order of the otherwise same words. The comparison of 
the isolated words is realized using the algorithm discussed above. For example, mistyping 
in the word of "automobile" and input as "Automibile" results in 2.78 equal words and a 
similarity coefficient of 92,53%. 

e) Address analysis 
The address field analysis is complicated because of the not clear format used. The task of 
the allocation of the street name and number in the data field road is realized in the 
following steps: 

o Determining of the separate parts (words) of the address data field. 
o The word which contains numbers presumably contains street number 
o This word is treated separately as street number; the remaining character string 

should contain the street name. 
o The standardisation of the street name includes standardization of similar terms, 

which replaced synonyms to road, place, etc. in different languages. An example 
of synonyms replacing in German is shown below: 

1. "strasse" <---"str" "weg" "gasse" "gs" "allee" 
2. "platz" <---"pl" "markt" "park" "ring" "anlage" "garten" 
3. "ort" <---"dorf","bach","berg","burg","graben","siedlung","laende","staette" 

 
f) Clustering of the data 

The important idea which was applicable in the discussed approach is, that the analysis is 
done over several data fields (with different priority). Thus, the size of the data screen can 
be kept small due to implementing ‘multi-pass approach’ [3], executing several 
independent runs using different keys. The amount of data records to be compared is 
requested out from the data base. The following conditions must be fulfilled during this 
process: 
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o All relevant data fields for the dupe search are kept in the data base in their 
original form and in modified form, where all the preparation tasks discussed 
above were executed. On the modify form a set of binary indices is applied. The 
modified form is prepared from the original form during overnight batch 
preparation mode and it is used during the next day. 

o An adjustable logical function is built using SQL instruction on the columns of the 
modified form. The logical function determines the size of the scanning window 
based on the importance of the data fields and using the multi-pass approach. 

o It is expected that the scanning window will contain between 200 to 300 data 
records. If the number of data records becomes too large, then the logical 
function calculating the selection limit can be changed. An example of such 
logical function is given below: 

Select row if 
o at least one of the fields with priority 1 is equal to the searched value or 
o at least two fields with priority 2 are equal or 
o at least three fields with priority 3, 4, 5 or 6 are equal to the corresponding value. 

The total similarity is calculated based on the similarity levels in every column using 
formula like the one below: 

Total Similarity = 1 –  (1 - SimilarityCoefficient(Field i)) 
 

3. EXAMPLE OF POTENTIAL DUPLICATION 

An example of search of potential customer dupes is given in the following example (table 
4). The column priority contains importance of the fields for the total result. The result from 
the comparison of the individual fields is registered in the column similarity.   The total 
result contains the result of the weight formula discussed above. 

 

Data Field Sample 
record 

Comparison set Priority Similarity Coefficient 

First Name Anna Anna 1 100,00% 
Name Mustermann Müller 1 6,00% 
Customer ID 2001001954 

85 
300200946734 2 3,00% 

Birth Date 22.08.1981 22.08.1981 2 100,00% 
Zip Code 1234 1234 4 100,00% 
City Musterdorf Musterdorf 4 100,00% 
Address Parkstrasse 

24 
Parkstrasse 24 3 100,00% 

Register 
Number 

456123 456123 2 100,00% 

   Total Similarity 71,65% 

Table 4: Duplication Example 
 

Flexible assignment of weights and using of rules for non-linear addition of the coefficients 
are used. AI aggregates values for data fields which meaning is overlapped (post code 
and city for example). 

4. TECHNICAL REALIZATION AND CONFIGURATION 

The technical realization of the duplicate detection for the discussed customer database is 
based on the following prerequisites: 
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The data fields of a potential duplicate data are inputted into the system via Web interfaces 
or via data import. After converting of the data in the modified form discussed above, the 
logic for the duplicate detection in the application server is activated. 
A set of dynamically-created SQL requests is sent to the database server, picking out the 
data records from the scanning window. This operation uses specially created binary 
indices which met the substantial performance requirements of this task. The data records 
in their modified form are returned. 
The comparison of the individual records with the potential duplicate one is realized in a 
module built using the CLIPS rule based engine. All methods and rules for the comparison 
of the individual fields and for the total comparison are developed as CLIPS rules. 
Algorithmic parts are implemented directly in Java and bound to CLIPS. Using of CLIPS 
rules provides maximal flexibility and the ability for further adjustments and development of 
the functionality. 
The result from the comparison of the data records is a similarity coefficient, in form of 
percentage (0 <= SC <= 100). Categorization as duplication can take place manually or 
automatically based on the list of the similarities and the threshold value. A manual 
confirmation of the duplications list is necessary for the avoidance of errors in any case. The 
configuring of the process of the identification of duplicates is very easy because the 
definition of the rules is stored in plain language in CLIPS-module files. The engine loads 
the script file and activates the rules. 
The penalty and bonus values of "Edit Distance" algorithm, discussed above are also 
subject of adjustment using test data. They are also set in CLIPS file, so the change of 
these values without any changes in the module is possible. 
Some other configurable settings include the keyboard layout for adjacent keys and the list 
of phonetically similar characters, threshold values and penalties for recognition and 
replacement of synonyms and deletion of non-relevant words, lists for corresponding legal 
forms and their abbreviations, lists of standardized address formats, address parts and their 
abbreviations in different languages, etc. 

 

CONCLUSIONS AND FUTURE WORK 
The discussed module was developed and tested using sample data. The following 
conclusions were made: 

o The preparation tasks, involving data modification must be performed on the 
database server. This approach gives better performance, compared to the one with 
performing transformations using the CLIPS engine. 

o To reach the needed performance in the real-time, the additional databases and the 
binary indices must be prepared during the previous night batch mode. 

o Using of CLIPS rules provides maximum flexibility for adjustment of the algorithm. 
o The edit distance algorithm must be implemented as a separated module in C to 

achieve maximum performance. 
o Future development concerns practical implementations in following directions: 
o Analysis and adjustments of the score and penalty table for the edit-distance 

algorithm. Collecting of nomenclature data for proper handling of input from other 
languages (French, Italian) and alphabets (Cyrillic, etc.) 
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