

1

Ontology Structure Evolution in a Framework for Building
Ontology-Based Information Systems

Samuil Nikolov

Abstract: The paper describes the way ontology evolution is implemented in a framework for building
ontology based information systems. The evolution is done in two phases – trivial class transformation and
rule-based transformation. The chosen structure of the framework and the way ontology data is stored in its
data base facilitate the easy implementation of the described approach. The structure evolution supports
automatic and on-demand updates of old class instances stored in the database when a new class version is
available.

Keywords: Ontologies, Information Systems, Schema Update

INTRODUCTION
Ontology structure evolution can be related to the problems of database and XML schema
evolution. The actual problem consists in applying the new structural changes to the
already stored data or data, created using the old schema. It is most often solved by
isolating the applications from changes in every possible way – most often by using a
stable database schema or by using views on the database tables [4]. This strategy
requires predicting all eventual future data field needs which is impossible in most cases.
Some of the notable existing solutions are summarized as follows:

• Ra and Rundensteiner [11] solve the problem by using view schema evolution
approach. It computes a new view schema that reflects the semantics of the desired
schema change, and replaces the old system‟s view with the new one;

• Xuan et al. [13] assume that changes of an ontology will not make false axioms that
were previously true. Using this assumption, they offer a solution to ontology
asynchronous versioning problem by storing old versions‟ data in separate tables that are
used only by particular version or a set of versions of the application they present;

• Noy et al. [8] as well as Stojanovic et al. [12] present solutions to the ontology
versioning problem where the two ontologies are compared, the changes are categorised
and presented to the end user for confirmation. This approach is suitable for the ontology
editors reviewed in their publications - Protege [15] and KAON [16] respectively, but not
suitable when ontologies are used for other purposes as is the case with the current
publication;

• Papastefanatos et al. [9] present an extension to structured query language (SQL)
that allows additional declarations when creating the database structure. These are used
to specify how eventual future changes to those elements should be treated.
The goal of this publication is to share experience in automatic updating of a system’s data.
The proposed update procedure allows continuous user operation in the system. The
publication actually describes the way software configuration management [2] is
implemented in the framework for building ontology-based dynamic applications described
in [7] - the way new versions of generated information systems are deployed. The
framework uses a set of models – domain specific language (DSL) programs - each
representing a single class of an ontology. They are handled by a core system
implemented in C++ and an integrated production system interpreter – in our case CLIPS
production system.

2

The DSL programs contain declarations of class properties, information about the way they
should be visualized and a set of rules that validate them and implement the information
system’s business logic. The framework’s database is organized as a multi-tier vertical
table [1] associating every class instance data to a unique identifier. One of the vertical
tables contains simple ontology class properties – the ones with cardinality equal to one.
Another two tables contain metadata and data of the complex properties – the ones with
larger cardinality. Those are presented to the end user of the framework as grid controls.
The framework’s database contains the assertional component (ABox) of the ontology
data, while the terminological component (TBox) is represented by the mentioned DSL
programs, one for every ontology class.

1. Transformation of ontology class instances
1.1. Overview of the solution
Figure 1 shows an overview of how the framework handles ontology class change. It

shows what happens when a class X1 is replaced by its next version – X1'.

Figure 1. Reaction of the framework to ontology class evolution

The figure shows framework’s database, the production system and a set of DSL
programs that define a system’s ontology classes X1..n. The model description of the class
X1 is substituted with a newer version X1‟. The database contains an instance identified by
id1, that describes a certain state s1 of X1 „s properties: s1 ∈ S(X1), where S(X1) is the
possible state space of X1. When the newer version of the DSL program representing the
class – X1' is loaded in the production system, it loads a set of facts, corresponding to the
newer set of properties (V1..n) and the rules processing those. The new properties of the
class X1' do not correspond to the properties stored in the database and they cannot be
asserted as values of the facts in the production system. To allow the assertion, the old
facts are transformed in a trivial way, marked with θ from properties corresponding to the
description of X1, to properties, corresponding to the description of X1', and are afterwards
asserted in the production system:

θ(X1',s1) | s1 ∈ S(X1), s1' ∈ S(X1') → s1' (1)

After this transformation the rules in the production system are started with the set of facts
corresponding to the state s1'. There are additional rules to the ones specified in X1' that
are fired only when inconsistency or incompleteness of the fact data is detected. This
incompleteness corresponds to the difference of the attributes between the class

3

descriptions of X1 and X1' – starting the rule ρ(X1, X1'). These rules‟ preconditions contain
the trivially converted state s1' and using custom funtions in the rules right hand side
(RHS), load the database-stored state s1. By applying a set of conversion operations on
the stored state s1, the rules achieve the new state s1", which adequately represents to the
evolution of the schema described by the ontology class change from X1 to X1':

ρ(s1,s1') | s1"∈ S(X1')→ s1" (2)

1.2. Initial instance transformation
The instance transformation, described with expression (1) consists of finding identical
identifiers of functional properties (i.e. properties with cardinality 1) and checking their
types for accordance. Complex properties (ones with cardinality larger than 1) are
compared by their identifiers and the type and name of the table columns described within
them. For the initial phase, a trivial approach is chosen as compared to the cases
reviewed in literature. Complex similarity analysis is not necessary, as additional rules are
applied at later stage on the data. They can access the original properties and correct the
crudely mapped ones accordingly. Figure 2 shows an instance stored in database and a
new version of the class description for that instance, containing default values for the
properties. The figure also shows an instance resulting from the trivial transformation of
the original instance to the new property descriptions.

Figure 2. Trivial mapping between an instance and new version of its class

The property V1 has type Т1 in both old and the new versions, so the database-stored
value Val1 is used in the resulting instance. When the type T2 of the property V2 is changed
to another one – for example to T1 in the new version of the class, the resulting instance is
given a properly transformed value V2 into the type T1. When a property identifier is
changed – like in the case when the property V3 was renamed or substituted with V9, the
default value in the class description is used. Analysis of similarities between the two
properties – V3 and V9 is avoided even if the two properties have the same type – Т3. If
they are similar, the mapping can be performed in the rule ρ. Complex properties (VC) are
associated to a single property identifier. In the example on figure 2 this is the identifier V4.
Every grid column, described in such a fact has a name (VC4i) and type of the data inside
it (Т4i). When the name and the type coincide as in VC41 – the database-stored value is
used – Val41. The same applies when column names are different, but their types are
identical in the instance and the new version of the class. This is done to facilitate column
renaming in the framework’s tables. If the goal is to replace a certain column, this can be
done in the transformation rule described in the next paragraph. When the name of a
column coincides, but the types are different, as in VC43, the database value is typecast
accordingly. When neither the name, nor the type coincide, then the resulting instance’s
property is given default values from the ones declared in the new class version. In this
case, the framework inserts the same number of default values in the column as are

4

present in the other columns of the property description to retain grid data consistency.

1.3. Rules for instance transformation
Using a set of rules to implement schema evolution is a known approach. Heflin and
Hendler [5] present the SHOE (Simple HTML Ontology Extensions) language, which is a
specialized extension to HTML for defining ontologies supporting versioning. Their
language supports simple rules for connecting similar data in different ontology versions.
Yu and Popa [14] discuss a way of database schema evolution representation through
rules. They propose a single operation for evolution rather than the common approach of
using many small incremental changes. Their approach, named Mapping-Based
Representation (MBR) is based on rules, determining new fields in a new table for each
changed value in the old table under some conditions, specified in a where clause. This
allows them to adapt only a part of the data in a certain database table column to the new
schema. Curino et al. [3] present the PRISM system, used for facilitating database schema
evolution. They use Schema Modification Operators (SMO) that represent atomic schema
changes and expand them with functionalities for converting types and semantic. The rules
in SMO, besides being used for schema changes, are also used for automatic modification
of the SQL queries to suit new definitions. Plessers et al. [10] present the Change
Definition Language (CDL), that allows definition of structural change rules in ontological
data. The expressions defined in CDL are parsed and converted to ontology definition and
query languages like RDQL (RDF query language) and applied on the modified ontology.

The solution for ontology structure evolution presented in current publication uses
lazy updates, applied on ontology class instances using production system rules. These
rules have the full capabilities of the production system language and can be more
complex than the solutions presented in the reviewed literature that use specialized
languages or language extensions. This allows greater flexibility when transforming and
recalculating new values if this is necessary. As an example, we will review a “financial
instrument” class evolution shown on figure 3. The field “Number of Months” is transformed
to two new fields – “Maturity Date” and “Frequency”. Proper schema transformation cannot
be performed without calculating maturity date using the begin date and number of
months. This is possible only if the transformation rules have the possibility to use
procedural-type instructions as is the case for example with CLIPS expert system tool
used in our implementation.

Figure 3. Nontrivial instance transformation

The class “Instrument Version 1” is denoted with X1, and its instance in the database with
s1. The properties, all of which have cardinality of one, are denoted as follows: “Begin
Date” is V1, “Number of Months” – V2, “End Date” – V3 and “Frequency” – V4. The goal of
the transformation is to achieve the instance s1” of the class X1‟ (“Instrument Version 2”),
that would represent the same data but correspond to the new schema. Using datatype
annotation extensions of ALC described in [6], the following declarations are valid from the
given definitions:

5

X1 ≡ =1V1 ∩ V1.real[date] ∩ =1V2 ∩ V2.real[int ˄ ≥1]
X1‟ ≡ =1V1 ∩ V1.real[date] ∩ =1V3 ∩ V3.real[date] ∩ =1V4 ∩ V4.Frequency (3)
Frequency ≡ { Daily, Weekly, Monthly, Semianual, Annual }

The trivial transformation of the instance s1 into the intermediate instance s1‟ gives the
following results:

θ (X1‟, V1(s1, а)) → V1(s1‟, а)

θ (X1‟, V2(s1, b)) →  (4)
θ (X1‟, s1) → V3(s1‟, defV3)
θ (X1‟, s1) → V4(s1‟, defV4)

, where a and b are constants corresponding to the domains of the properties V1 and

V2 – i.e. a date and an integer larger than 1 and defV3 and defV4 are default values
corresponding to the properties V3 and V4. After the trivial transformation, the temporary
instance s1‟ has one valid value – the begin date and two default values – end date and
frequency. Also, the number of months from the database stored instance s1 is ignored due
to schema change. To achieve proper transformation, the following rule is added:

ρ(V1(s1‟, а), V2(s1, b)) → V3(s1‟, c) ∩ V4(s1‟, Monthly) (5)

The rule uses the begin date from s1‟ and the number of months from the database
instance s1, to calculate the value c of the property “End Date” (V3) and sets the value
“Monthly” to the property “Frequency” - V4. The rule can be implemented with the following
example CLIPS rule defined inside “Instrument”‟s class DSL program:

(defrule VersionTransformation
(InstanceIdentifier (str-value ?instanceId))
(BeginDate (value ?startDate))
(EndDate (value 0.0))
(Frequency (value -1))

=> (6)
(if (and (<> ?startDate 0.0) (> (str-length ?instanceId) 0)) then
(bind ?months (GetFieldDB ?instanceId “Instrument” “NumberOfMonths”))
(bind ?endDate (AddMonths ?startDate ?months))
(assert (EndDate (value ?ednDate)))
(assert (Frequency (value 2)))
)

)

The rule has a precondition that requires the facts “End Date” and “Frequency” to have
invalid values – the ones set by default. It associates the value slots of the facts “Begin
Date” and “Instance Identifier” to the wildcards ?startDate and ?instanceId. The rule’s right
hand side checks if the currently calculated instance of the class „Instrument” is
transformed or newly created by comparing the values of the two wildcards with their
corresponding default values. If they are not the default values, this means that the
instance is transformed, and the rule continues operation. It uses a core-supplied custom
function “GetFieldDB” to load the value of the property “Number of Months” from the
database. The proper instance is identified using its identifier and class. The function
accesses the previous version of the instance to be transformed. After that, the rule uses a

6

function “AddMonts” to add the loaded value to the begin date and calculate the end date
of the instrument at hand. The custom functions are added to the production system by the
framework core. Our example implementation has many such custom functions used for
proper information system generation and faster calculations. In the end of the example
code (6), two new facts are asserted in the production system knowledge base –
containing the proper values for the facts “End Date” and “Frequency”. After performing
both steps – the trivial transformation and the rule transformation, the new instance s1”
represents most accurately the data stored in initial instance s1 and it can be stored back in
the database. The described mechanism is suitable for migrating data between numerous
versions because the preconditions of each version‟s transformation rule can detect the
proper database stored version.

2. Updating a group of instances to newer versions
The proposed approach allows also updating a group of database stored instances to their
new schema descriptions. This is necessary when a change of properties of a certain class
causes changes of properties of other connected ontology classes that also need to be
updated. As an example, figure 4 shows a financial portfolio that references instruments
from different versions in its instrument list property. To calculate its net present value
(NPV) it has to transform all instances of the connected instruments to the last version –
numbered 3 that contains a field “NPV”, collect the data from these fields and summarize
them.

Figure 4. A portfolio instance referencing instrument instances from different
versions

This can be done using a group calculation function that accepts a class description with
certain version (X1‟) and a list of instances that have to be transformed and calculated
using the rules defined inside this class (s1,..sn). The result is a set of properly transformed
class instances (s1” .. sn”):

φ(X1',{s1, ..., sn)}→{s1",...,sn"}:

ρ(s1,θ(X1‟,s1)))→s1"
ρ(s2,θ(X1‟,s2)))→s2" (7)
...

7

ρ(sn,θ(X1‟,sn)))→sn"

In the example form figure 4, a calculation rule inside the DSL program of portfolio1 calls
the function φ(X3,{instrument1,instrument2)} and thus causes transformation of the
instances instrument1 and instrument2. After running the transformation procedure, it can
extract the NPV values from those instances using a function like the already presented
“GetFieldDB” and summarize the values in its “Net Present Value” property. If necessary,
the function φ can be called from the transformation rules of the individual instances - ρ,
which can cause the update of instances of classes from the whole ontology. Of course,
there is risk that with such recursive calls, an endless loop calculation could occur. The
domain specific language programmers are responsible for avoiding such situations by
preventing mutual dependencies in the ontology classes. If such dependencies cannot be
avoided they should be very careful with using the group calculation function.

CONCLUSIONS AND FUTURE WORK

The paper reviews the way software versions are maintained in a framework for building
ontology based information systems. The information systems are defined by DSL
programs – one per ontology class. The transition to newer version is done by substituting
these programs and updating the data about class instances already stored in the
database. The instance update is reduced to applying the changes in terminological
component (TBox) of an ontology on its assertional component (ABox). The proposed
approach uses two-phase adaptation of the stored class instances – a trivial
transformation followed by a transformation through rules. The use of rules achieves
optimal correspondence between old and new versions because they use complex
operations during transformation. The specific structure of the information systems built by
the framework – the fact that their business logic is also coded with rules - facilitates the
use of rules in the described way. The version transition rules described in the publication
are just a few among all the rules in the DSL programs that represent every class in the
information system and are replaced when changing versions. A way for automatic update
of instances was reviewed that allows any used instances of classes to be updated on
demand. The method described allows easy and unnoticeable for the end user version
transition in the framework for building ontology based information systems.

REFERENCES
[1] Agrawal R., Somani A., Xu Y. Storage and Querying of E-Commerce Data. In

Proc. of the 27th Int. Conf. on Very Large Data Bases, 2001, pp.149-158.
[2] Conradi R., Westfechtel B. Version models for software configuration

management, ACM Comput. Surv. 30(2), 1998, pp.232-282.
[3] Curino C., Moon H., Zaniolo C. Graceful database schema evolution: the PRISM

workbench. Proc. VLDB, 2008, pp.761-772.
[4] Hartung M., Terwilliger J., Rahm, E. Recent advances in schema and ontology

evolution, Schema Matching and Mapping. Springer-Verlag, 2011,pp.149-190.
[5] Heflin J., Hendler J. Dynamic Ontologies on the Web. In Proc. of the 17th national

Conf. on AI and 12th Conf. on Innovative Applications of AI, AAAI Press,2000, pp.443-449.
[6] Motik B., Horrocks I. OWL Datatypes: Design and Implementation. In Proc. of the

7th Int. Conf. on The Semantic Web, 2008, pp.307-322.
[7] Nikolov S., Antonov A. Framework for building ontology-based dynamic

applications. In Proc. of CompSysTech '10, 2010, pp.83-88.
[8] Noy N., Kunnatur S., Klein M., Musen, M. Tracking changes during ontology

evolution. In 3rd International Semantic Web Conference, 2004, Hiroshima, Japan.
[9] Papastefanatos G. et al., Vassiliadis P., Simitsis A., Aggistalis K., Pechlivani F.,

Vassiliou Y. Language Extensions for the Automation of Database Schema Evolution.

8

ICEIS 2008.
[10] Plessers P., Troyer O., Casteleyn S. Understanding ontology evolution: A

change detection approach. Web Semantics: Science, Services and Agents on the WWW,
Vol.5(1), 2007, pp.39-49.

[11] Ra Y., Rundensteiner E. A transparent schema-evolution system based on
object-oriented view technology. IEEE Trans. on Knowledge and Data Engineering,
Vol.9(4), 1997, pp.600-624.

[12] Stojanovic L., Maedche A., Motik B., Stojanovic N. User-Driven Ontology
Evolution Management. In Proc. 13th International Conference on Knowledge Engineering
and Knowledge Management. Ontologies and the Semantic Web, 2002.

[13] Xuan D., Bellatreche L., Pierra G. A versioning management model for ontology-
based data warehouses. In Proc. 8th Int. Conf. on Data Warehousing and Know. Disc.,
2006, pp.195-206.

[14] Yu C., Popa L. Semantic adaptation of schema mappings when schemas evolve.
In Proc. 31st Int. Conf. on Very large data bases, 2005, pp.1006-1017.

[15] http://protege.stanford.edu/
[16] http://kaon2.semanticweb.org/

ABOUT THE AUTHOR
Samuil Nikolov
Eurorisk Systems Ltd.
31, General Kiselov Str.
9002 Varna, Bulgaria
Е-mail: samuil at eurorisksystems dot com

http://protege.stanford.edu/
http://kaon2.semanticweb.org/
mailto:samuil@eurorisksystems.com

