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Abstract: In this paper a combination of time series clustering and prediction is considered. Both clustering 
and prediction are done by neural networks with supervised and unsupervised learning respectively. Some 
optimizations of the clustering procedure are proposed for software implementation. Prediction results for 
univariate time series are shown and analysed. 
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INTRODUCTION 
 

Time series prediction is a problem of present interest in the computer sciences. It is 
important because even if the predictions do not come true, they give valuable information 
about the underlying process behaviour. The time series prediction facilitates the future 
analysis of a given system that could considerably reduce some expences. Prediction of 
sun spots, currency exchange rates, economic indices, number of incoming requests to a 
given server, trajectory of a given moving object are only part of the most interesting 
applications in time series prediction. 
Connectionist researchers also show interest in possibilities to combine clustering and 
prediction. They have used different approaches in the form of network committees, agent 
teams, stacked generalization, local models, etc. [9]. In [2] an approach using self-
organizing map and local autoregressive (AR) models is proposed. It is well-known that 
the neural network can be regarded as a non-linear autoregressive model. That is why it is 
a more powerful tool compared to the linear autoregressive models [4]. In this paper some 
improvements of the local models by using neural networks instead of autoregressive 
models are proposed. The problem of time series prediction is solved by decomposition of 
the input data into many parts and separate non-linear models are used for each part. 
Moreover, some performance optimizations are proposed to the general self-organizing 
map clustering algorithm. 
 
 

TIME SERIES PREDICTION 
 

In the univariate time series prediction problem, the input data consists of a sequence of 
values and the next values should be estimated by analysis of the previous observations. 
Additional factors are not involved in this process. When the predicted values are 
calculated, often confidence levels are shown along with the results. 
Some of the most commonly used methods for time series prediction are [3]: averages, 
autoregressive methods, decomposition, exponential smoothing, trend extrapolation, 
neural networks, regression, etc. 
 

 
TIME SERIES PREDICTION BY A NEURAL NETWORK 

 

In this paper a method of prediction by neural networks fed with subseries obtained from 
the initial time series is considered. The subseries are obtained through a sliding window 
that traverses the time series and thus generates input-output training patterns for the 
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network [11]. Most of the regression models use this technique.  

 

An important matter is the determination of the window size. There are two main 
techniques for solving this problem. Most often autocorrelation and partial autocorrelation 
functions are analysed for this purpose. Sometimes because of the complexity of their 
structure brute force searching can be done. This search starts with a window containing a 
single value. Then model building is performed followed by test prediction and error 
calculation. After that the size of the window is increased by one element and the process 
is repeated until the size of the window is equal to the size of initial time series or 
satisfactory error is reached. 
In the prediction stage the sliding window is situated at the end of the series to obtain input 
values to feed the neural network. The output of the neural network is considered as the 
first predicted value. Then the first prediction is considered as a part of the initial time 
series and the window is moved again in order to predict the second value. This procedure 
(recursive prediction) is repeated until the desired time horizon is reached. This process is 
graphically shown on fig.1. The prediction begins when the window is moved N-p steps, 
where N is the initial time series length, p is the window size (number of values shown in 
the grey rectangle). 
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Figure 1. Windowing approach 
 

Some pre-processing operations should be done before the training process. The 
subjective of the pre-processings is to transform the initial series into a form needed for the 
neural network to work properly. This stage consists mainly of the following operations: 
normalization, different techniques for trend removing and sometimes seasonality 
removing. They can be used in different order according to the time series characteristics. 

 

 
CLUSTERING AND PREDICTION 

 

An interesting and promising approach for time series prediction is clustering to be 
used as a pre-processing of the initial data [2, 7, 9]. Some advantages of this approach 
are: the model for every cluster can be built and trained in an independent computer 
system that leads to improved parallel computations; homogeneous training regardless of 
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the time series length; possibility for detailed analysis in some specific areas of the time 
series; better interpretability; an independent distribution of the testing patterns along the 
series. Moreover, this approach allows usage of combination of different model types for 
prediction. For example, a feed forward neural network and an autoregressive model can 
be used for two different parts of the input data. In addition, every part can be similarly 
separated into additional local models and hierarchical structure to be employed. This 
allows much more flexible modelling compared to the global models. In [8] are also 
described some other advantages of the local models. Here an approach is analysed in 
which the initial set of vectors obtained by windowing is clustered in homogeneous 
subsets. An example of separation of the vectors into nine clusters is shown on the left 
side of fig.2. For every such cluster a separate neural network is built and trained.  
In the current solution a self-organizing map is used for clustering because it allows 
assigning of different priorities for the training patterns. It is reasonable to assign a higher 
priority to the last elements in the time series. The usage of self-organizing map allows 
easy modification of the general training algorithm for this purpose [1].  
Some clusters can be empty, or they may have a lot of elements (patterns). That is why 
the number of patterns in every cluster should be controlled by a threshold value for the 
minimal number of elements. In the current solution, first the number r of elements in every 
cluster, as if they were equally distributed, is calculated (1), where n is the number of all 
training patterns, c is the number of clusters. After that the real number of patterns ωi in 
cluster i (2) is divided by r and if the result φi is smaller than the threshold then this cluster 
must be merged with the nearest cluster j according, for example, to the Euclidean 
distance [10, 6]. 
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Figure 2. Clusters of vectors (left). For every output neuron (cluster) in the self-organizing 

map a multilayer perceptron is created (right). 
 

 
Another important matter is the separation of the initial data into training and test subsets. 
It is well known that the error calculated for the training patterns is not always a good 
indicator of the neural network generalization ability – fig.3. Such data separation must be 
done for every cluster. 
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Figure 3. Training and test error. 
 

The separation of the data into training and test subsets can also be performed before 
clustering, though this may cause irregularity in the clusters. As a result, any cluster may 
have training and testing patterns, but other may have only training or even only testing 
patterns. To overcome this problem, first the clustering can be done for all (training and 
testing) patterns and then the relative number of testing patterns in every cluster should be 
determined. If the number of testing patterns is small or there are no testing patterns, then 
the neural network corresponding to this cluster cannot be trained with out-of-sample 
validation. If there are only testing patterns for a given cluster then it should be merged 
with the closest one. An alternative approach is only training patterns to be clustered and 
used for neural network training. 
 
 

CLUSTERING OPTIMIZATIONS 
 

Several optimizations of the general self-organizing map training algorithm [5] are 
proposed in the solution. The output layer of the self-organizing map has a fixed size that 
in not changed over the training. This allows accelerating the stage of searching neurons 
within the neighbourhood radius. If for example the output grid of the self-organizing map 
is rectangular with four neurons in x-axis, three neurons in y-axis (table 1) and every 
neuron is a square with size 10 units then sorted distances from element (w) with 
coordinates (2, 2) to the other 11 units are shown in table 2. 

 
Table 1. Grid of output neurons in SOM. 

d11 d12 d13 d14 

d21 w d23 d24 

d31 d32 d33 d34 

 

Table 2. List of pairs “neuron - distance” 

d12 d21 d23 d32 d11 d13 d31 d33 d24 d14 d34 

10 10 10 10 14 14 14 14 20 20 23 

 

The distances between the neurons in the grid do not change and this fact can be used by 
calculating distances between every two neurons beforehand. Then a set of pairs for every 
output neuron is created. The first value in a pair is an index of a neuron in the grid and the 
second value is the distance to this neuron. The indices of neurons in the grid are set 
ascending from left to right and from top to bottom. The pairs should be sorted regarding to 
their second value (distances). In this way the set of first values in the pairs of a given 
neuron is a list of indices sorted by nearness to the given neuron. According to the original 
Kohonen algorithm when the best matching neuron is found, a modification should be 
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done of its weights and the weights of its neighbours in the neighbourhood radius. Using 
the procedure described here allows traversing of all output neurons in the grid to be 
reduced. Only the units in the neighbourhood radius are traversed by the following cycle: 
 

for(i=0; pair[i].second_value < neighbourhood_radius; i++) 
{ 
 neighbourhood_neuron_index = pair[i].first_value; 
 adjust_weights_of_neighbourhood_neuron; 
} 

 
Moreover, another accelerating procedure can be applied when the neighbourhood radius 
is equal to the size of one neuron. In this case the new winning neuron is just the old 
winner (in about 95% of the epochs) because every input pattern modifies only its winner's 
weights toward pattern values. Using a simple boolean check and an array that shows 
where the pattern has been mapped in the previous epoch can reduce operations needed 
to find the best matching neuron. 
 

if(neighbourhood_radius < neuron_size) 
{ 
 winner_neuron_index = repr_position[current_pattern] 
} 

 
Every element of the array repr_position is an index (for indexing in the Kohonen grid) of 
the winning neuron for training pattern number equal to the index in the repr_position 
array. For example, if training pattern number one has had a winning neuron number 2 
(that is d12 in table 1) in the last epoch then, with zero based indices in the array, the value 
of repr_position[0] is 2 (fig.4). 

22

0     1      2     3      4     5      6 …

number of training pattern

number of neuron (winner)

index

value

 
Figure 4. Array for saving the position of training patterns. 

 
According to the performed tests, the two optimizations described above accelerate the 
general self-organizing map algorithm by 0 - 30% according to the number of input 
patterns and the number of output neurons. 

 
EXPERIMENTAL RESULTS 

 

The results of prediction of the time series for airline passenger data can be seen on fig.5. 
The prediction with clustering is shown with root mean squared error 113,46 and the 
prediction without clustering is with error 118,29. 
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Figure 5. Prediction of the last 30 values with clustering (left) and without clustering (right) 

 
Four clusters are used for the prediction with clustering. Data pre-processing (trend 
removing, data normalization etc.) are performed before clustering. The multilayer 
perceptrons work directly with the data obtained from clusters. The following steps are 
performed after data pre-processing and clustering. 
 

1) Training: 

• For every cluster a multilayer perceptron is created and trained. 

• Individual settings are used for every multilayer perceptron (adaptive/non-adaptive 
learning rate, momentum factor, number of hidden neurons etc.). 

2) Prediction: 

• The vector obtained by the last data window is fed to the self-organizing map and 
the winning neuron (and respectively cluster) is determined. 

• The vector is fed to the multilayer perceptron corresponding to the determined 
cluster and a prediction value is generated. 

• The procedure is repeated, and recursive prediction is performed. 
 

Every cluster comprises both training and testing patterns. For every cluster the training 
patters are selected to be the last 10% of the data. Every multilayer perceptron created for 
a cluster is trained as if it should learn the whole series. Moreover, the training patterns in 
every cluster can be shuffled in every epoch. 
 
 

CONCLUSIONS AND FUTURE WORK 
 

There is a variety of prediction methods that can be used in combination with the 
clustering of input-output training patterns obtained by the sliding window. They can be 
easier adjusted using the homogeneous structure of the cluster data. For example, 
ARIMA, neural network, even simple regression can be used similarly to the described 
approach. If the time series has too many observations, then a more complex structure of 
different hierarchical local models can also be investigated. Another direction for further 
development can also be investigation of approaches for assigning of different priorities of 
the training patterns according to their position in the initial time series. 
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