
1

User Model

Rule-Based Framework for Intelligent GUI Adaptation

Plamen Mihaylov Paskalev, Anatoliy Stefanov Antonov

ABSTRACT

Building of a rule-based framework for dynamic

adaptation of a complex GUI is discussed in the article.

The need of such a solution and using of approaches from

Intelligent User Interfaces (IUI) paradigm are

augmented. Ways of collecting the information for the

user activities and algorithms for conclusions based on it

are described. The problems, technical solutions and the

advantages of the selected approach are overviewed.

KEY WORDS

Intelligent User Interfaces (IUI), Rule based systems,

Clips, Machine Learning

1. Introduction

The user interface is an essential part of every application.

The design and development of the GUI for a new

application has to answer many, in some cases opposite

requirements: the interface has to be clear, user-friendly,

predictable and consistent, to show the right amount of

information. The GUI design becomes a challenge

especially in case of complex systems with large amounts

of data to be shown.

The work with such applications is often a challenge

for the user too. He has to become familiar with a large

number of screens, sequences of actions, controls,

features etc. The applications of this type are equipped

with user guides and online help systems, but it remains a

tremendous task for at least part of the users to understand

the logic of the application. The user interface should be

intuitive and should be constructed dynamically following

the user experience.

There is one aspect, connected with the two,

discussed above: the marketing of the newly developed

application. If the application provides rough interface,

one, the user is not familiar to or interface, which doesn’t

help the user in performing his every day’s tasks then the

application most likely will be not a financial success.

One approach to lower the pressure for the user is to

give to the system the ability to learn the behavior of the

individual users and to adapt itself according it.

This article describes an approach for building of

adaptive interfaces, the problems encountered and the

solutions, found during the development. Although not a

general solution, able to be used in any domain, it was

designed not as a part of a specific application, but rather

as a framework, which can be used in various scenarios.

In the next chapter an overview of the adaptive

interfaces as part of Intelligent User Interfaces (IUI),

together with review of some related works is given. The

solution’s architecture, data structure and algorithms used

are discussed in chapter 3. The behavior and technical

challenges in the realization are discussed in chapter 4,

followed by some results from a real prototype work in

chapter 5. In chapter 6 the advantages of the discussed

approach are classified, and the opened points are listed.

2. Adaptive Interfaces

2.1 Using of adaptive interfaces paradigm

The main idea behind using the adaptive interfaces is to

adapt the system functionality or user interface or both to

each individual user [1]. Known under different names as

adaptive interfaces, user modeling systems, software

agents, intelligent agents or personalization [1], the

approach includes collecting and using of information for

the user, identified by its login name, IP address, etc.

Based on a learning algorithm, the system is capable to

deduce some kind of user model, which is then used as a

basis for the adaptation of the behaviour of the system.

In [1] the user-adaptive system is defined as (fig.1):

“An interactive system that adapts its behaviour to

individual users on the basis of processes of user model

acquisition and application that involve some form of

learning, inference, or decision making.”

Figure 1: user-adaptive system [1]

The following prerequisites for the implementing of such

a system can be defined:

Information about the

user

User Model Acquisition

Predictions or

decisions about the

user

User Model Application

2

• Complexity of the applications – Today, and

moreover in the future most of the people already use

or will use one or more complex applications in

their everyday life. Using of adaptable systems, i.e.

systems, which can be modified by the user, will be

not sufficient to reduce the stress of the user and to

avoid potential mistakes. As it was discussed in [23],

the users don’t tend to adapt the interface radically.

And it is not clear, whether if they use this

opportunity, they make it in the most effective and

useful way ([24]).

• Amount of data – Even if the application is relatively

simple, the users now have access to significantly

larger amounts of information. Internet access, search

engines, multimedia, different types of documents are

only part of the reasons for this phenomenon. The

idea to delegate part of the tasks for maintaining this

array of information to the software is not only

attractive, but also is quite necessary.

• Different types of users – As it was discussed above,

the software can be used from different people, with

different skills, competency level, education,

nationality, age, etc. Moreover, the skills are

changing with time. It is more and more difficult to

create application, suitable for all the types of users,

for all contexts of usage.

• Complex interfaces, where on a single screen large

amount of heterogeneous data has to be shown

(health information systems, financial software,

industry applications, etc.), need dynamic control, as

the effort for building and testing of such control can

be difficult and time-consuming task.

The main directions, in which the adaptation can help the

communication between the system and the user, are

summarized below:

• Personalization of the user interface – The system is

able to modify the user interface in order to make it

closer to the way the user is working with it. The

elements of the GUI (controls, menus, forms) are

being automatically modified.

• Automatic help, advice or suggestions generation –

based on assumptions concerning the user goals and

expertise level, the generated information is expected

to help the user in performing his tasks and

understanding the logic of the system.

• Content personalization – based on the previous user

activities, the system is able to filter the information

to be shown on the forms, in the lists, selections, etc.

• Automatic help in searching information, making

choice, etc. – The system is able to help the user in

finding electronic documents, preparation of the

queries to the search engines, proper displaying of the

information, the user might need, etc.

• Performing of sequences of routine tasks – Tasks or

sequences of tasks, which are performed often and

consume the user’s time and attention, can be

performed from the system.

2.2 Related Works

There exist various works in each of the directions,

discussed in the previous chapter.

In [2] the interaction between the user and the

interface of an online shop is being investigated. The

interface is being adapted both between the sessions and

during the sessions. Special attention is paid to the

correlations between the products bought. The complex

correlations lead to complex dependencies and rules in an

attempt to find the most convenient way of adaptation.

Microsoft MS Office Assistant [3] provides context-

dependent automatic help in using the application. Based

on Lumiere prototype ([4]), it uses Bayesian models for

representing the user behaviour, includes own language

for definition of the events, uses together the conclusions

and the user actions and inputted information. The

prototype calculates the probability of whether the user

needs the advices of the system.

As defined in [20], inflecting an interface means

organizing it to minimize typical navigation. In some

cases, this means placing the most frequently desired

functions and controls in the most convenient locations

for users to access them, while the less frequently used

functions will be moved deeper into the interface

(Microsoft SmartMenus, etc.). Rarely used features

should be removed from the common workspace. This is

an example of the work the application can done in order

to let the user feel more comfortable.

SwiftFile ([5]) analyzes the way the user is sorting

emails in different folders and tries to predict the 3

folders, where the next email is going to be placed with

higher probability. To be able to do this, the system

presents the folders as vectors, weighted on the words,

which appear in the mails. When a new mail arrives, the

distribution of the words in it is compared to the ones,

already represented in the vectors. The 3 potential folders

are then visualized as options via 3 buttons on the screen.

The user can use the buttons or to ignore the suggestions.

The observation of the user actions is the usual way

of collecting data for the intelligent assistants. AVANTI

([6]) is an example of this approach. The system is

watching the communication between the user and the

AVANTI Web browser, which provides opportunities for

adapting its behaviour according to the user’s abilities,

requirements and preferences.

In a similar way, the DESK ([7]) add-in to the system

for generation of dynamic Web pages Pegasus is watching

the actions of the users and is collecting data for the steps

of modification of the pages. The system tracks down all

the main actions of the user (inserting text, change of the

style, etc.) and tries to determine the context. Finally, it

builds primitives, which are used as a basis for creating of

a model of the communication.

An approach for adjustments of the application in

order to meet some specific requirements of people with

3

disabilities were discussed in [8]. The problem is

identified (for example repeatable double keyboard

button click instead of single click) and an interval is

determined, where to ignore the second click. Similar

idea was discussed in [19] – the system extends

automatically the acceptance area around a button,

realizing that the user is repeatable clicking around it.

In [9] different variants for analysis of the user

actions are examined in order to make some conclusions

on his interests.

Plan recognition as an attempt for predicting the user

actions, based on assumption, that the user actions are

parts of his plan to reach a goal or to complete a task, are

discussed in [10]. This approach, together with using of

stereotypes ([11], [12]) to present the user’s

characteristics (competency, education etc.) requires

creating of precise user models and thorough knowledge

of the domain.

3. Adaptive Interface Framework

2.1 Goal of the Research

The aim of the research, discussed in the current article

was to build a framework, which can be used for

adaptation of user interfaces of complex applications. The

following requirements were defined to the results of the

investigation:

• The framework is expected to work well with screens

with many controls.

• The investigation must be platform independent, i.e.

not connected with a certain type of applications

(Web, Windows).

• Framework should be capable of using different

software solutions, not to be tied to a certain data /

project.

• The last direction of the previous chapter, performing

of sequences of routine tasks, was determined as the

first goal of the investigation.

The investigation is part of a larger project ([13],

[14],[15]), which examines the different aspects of

Intelligent User Interfaces (IUI), applicable to medium-

sized software projects.

The current article discusses the ways of collecting

information for the user activities, using this information

for acquisition of the user model (fig. 1), and building

dynamical suggestions for the user.

2.2 Application Structure

The solution, discussed in the previous articles ([13],

[14]) uses semi-automatic approach for generation of

GUI. It combines a presentation layer effort for dynamic

changes ([13]) of the GUI elements (hiding controls,

groups, making fields read-only, changing of the labels,

changing types of controls: from edit boxes to drop down

lists, etc.)

with adaptation activities, based on the collected

information for the user actions.

The application is based on using rules, which is

common practice in dynamic GUI generation [16].

The proposed solution is based on CLIPS engine

which uses rule-based language with a clausal logic. The

reasoning process is data driven; rules are inserting the

result facts into the fact base. Other rules are activated by

inserted facts.

The GUI is described in form of CLIPS ([17]) facts.

The description is platform-independent ([18]). The tasks

are solved via applying two-layered set of rules ([14]) on

the facts, describing the GUI. The current article discusses

the rules from the second set (fig. 2), providing adaptation

of the UI.

Figure 2: Application structure

The CLIPS module can be integrated into projects on

different platforms and operating systems: Windows

applications using standard API, .NET managed code or

Windows Presentation Framework (WPF) GUI

description, Web applications, Java-based server

applications with Java Server Faces (JSF) GUI, etc. It can

be compiled for different operating systems (Windows,

Linux, Solaris, etc.).

The application loads the descriptions in and converts

them to a hierarchical structure of objects. The objects

define the appearance of the graphical elements (position,

style, type, data binding, etc.). The following types of

objects these hierarchies consist of ([13]):

• Forms – correspond to the application views. The

form object includes only one (root) group object.

CLIPS engine

Rules (Level 2)

Facts’ (GUI description)

Rules (Level 1)

Facts (Data)

Facts’’(GUI description)

Facts (User Model)

Facts (GUI description)

GUI

4

g  k k k g k

• Groups – objects, which are able to realize the GUI

hierarchy. A group contains ordered set of other sub-

groups or controls.

• Controls – A control object describes a <Label,

Control> pair of a single control (edit box, drop down

list, radio button, etc.).

2.3 Building the GUI

The data objects, user activity and GUI definition are

converted to facts and loaded into CLIPS engine. The

rules from group 1 (fig. 2) modify the GUI definition

facts, leading to a new GUI, which match the constraints

and requirements of these rules ([14]). The rules from

group 2 are the object of the current article. They analyze

the data for the user activities and modify further the GUI

description. The GUI description is converted back to the

internal class objects and is used for building the GUI.

The format of the input and output CLIPS facts is

When the application accumulates enough trace

information, adaptation rules can be used. The

information is being kept on per user basis. The current

user is determined during the login procedure.

4.2 Learning Algorithms

Current version of the discussed solution is able to handle

one of the adaptation directions, discussed in chapter 2:

Performing of sequences of routine tasks. The applied

rules search for the following recognizable patterns:

• Repeatable actions, performed over the content

of a single control

• Sequences of actions

4.2.1 Repeatable actions

The first stage is searching for repeatable actions. The

identical, so the including of the rule-based approach is

transparent and doesn’t need any changes in the data

action ai is defined as the triple
ai  Ci , Asi ,Vi 

representation and logic of the application. where Ci is the identifier of the control, where the action

was identified, Asi defines the type of the action and Vi is

4. Adaptation of the GUI

4.1 User Traces

As defined in [21], an adaptive interface requires three

inputs: an interface specification (I), a device model (D),

and a user model, which can be represented in terms of

user traces (T). The tracing of the user actions is a

common practice for collecting information for the user’s

behaviour. In AVANTI [6] the system tracks the user

interaction in a web browser designed as a front-end of

the AVANTI information system. In our realization, the

interface specification (I) and user traces (T) are given in

form of facts, the device model (D) is ignored as far as the

using of different devices goes beyond the goals of this

research.

A user trace (T) is a set of trails where, according

[22], the term trail refers to “coherent” sequences of

the value of the action. For each recognized pattern there

is a new fact added. The actions then are groupped using

the following triples

Sai  ai ,Tsai , wi 

where Tsai denotes the trails, the action was found in and

wi denotes the weight, assigned to this action.

Some of the recognized actions are given in table 1.

4.2.2 Actions set

On the second stage the information for the isolated single

actions is examined. The goal is to extract information for

repeatable sequences of actions.

A set of actions can be described as

Ma j  Aj ,T j ,Wj 

where Aj  (a j1, a j 2 ,..., a jm) is the set of single actions,

elements manipulated by the user. The trail T is defined in united in this set, Tj  (t j1, t j 2 ,..., t jk) is the set of trails,

a similar to the used in [21] way - as a set of events Ui , where this set of actions was found, W is the weight,
where Ui is a tuple (ei , Voldi , Vnewi) – the interface

 i

element manipulated and its old and new value

respectively.

There are two main differences between the discussed

approach and the one in [21]: Due to the specific of the

Web applications the order of the events of a trail can’t be

restored on the server side. All the modified controls are

received together with the HTTP response. The trail is

assumed to end either when when the user switches to

another page or invokes an action (pressing button, menu

item, etc.).

assigned during the analysis.

The weight is calculated in the following way:

W
'
 w * q

g
, a  A , q

g


k

Tg

Tsak

5

g

j

g

g

g

Table 1

Recognized Actions

2. Coincidence of actions

Ma j  Aj ,Tj ,Wj , Sai  ai , ti , wi , Aj  (ai)

=> The existing record is modified:
Ma  A ,T  t ,W

'


j j j i j

3. Coincidence of the trails, existing action

Ma j  Aj ,Tj ,Wj , Sai  ai ,Tj , wi , ai  Aj

=> The weight is recalculated

Mag  Ag ,Tg ,W
'



4. Coincidence of the trails, new action

Ma j  Aj ,Tj ,Wj , Sai  ai ,Tj , wi , ai  Aj

=> The existing record is modified

Ma j  Aj  ai ,Tj ,W
'




5. Partial coincidence

Ma j  Aj ,Tj ,Wj , Sai  ai ,Tsai , wi , ai  Aj ,

Tj  Tsai  Toff j ,Toff j  0

=> A new set record is created or
Ma  A  a ,Tsa ,W

'


g j i i g

=> The weight is recalculated (if the record exists already)

Mag  Ag ,Tg ,W
'



6. Partial joining

Ma j  Aj ,Tj ,Wj , Sai  ai ,Tsai , ai  Aj ,

Tsai  Tj  Tsouti ,Tsouti  0

=> A new set record is created (if it doesn’t exist)

Mag  Ag ,Tsouti ,W
'


where Ag  Aj , am  Ag ,Tsam Tsai

=> The weight is recalculated (if the record exists already)

Mag  Ag ,Tg ,W
'



7. Adding of new action
Ma  A ,T ,W , Sa  a ,Tsa , a  A ,

j j j j i i i i j

Tsai  Tj  Tsouti ,Tsouti  0

=>A new set record

where

Mag  ai ,Tsai , wi  is created,

4.2.2 Recognizing sets of actions

1. A new action is found

Ag  Aj , am  Ag ,Tsam Tsai

=> Adding the new action to the existing record
Ma  A  a ,T ,W 



Ma j  Aj ,Tj ,Wj , Sai  ai ,Tsai , wi , ai  Aj
j j i j j

=> A new set record is created => Recalculation of the weight of the both records
Ma  a ,Tsa , w  Ma j  Aj ,Tj ,W

'
 , Mag  Ag ,Tg ,W

'


g i i i
j g

=> Records with a subset of the trails

Mas  ai ,Ts ,Ws ,Ts  Tsai are removed (if exist).

Data

Type

Example Recognized

Action (А)

Value

(V)

String “Vienna” 7

“VIENNA”

Upper case

String “Sunday” 7

”sunday”

Lower case

String “london” 7

“London”

First capital letter

String “fast food “ 7

“fast food“

Trim spaces

String “xpos” 7 “ndef”,

“ypos” 7 “ndef”

Convert to

constant

“ndef”

number 5.13 7 -5.13 Change of sign

Number 57 10

10.5 7 15.5

Absolute change 5

Number 57 10

10 7 20

Relative change 2

Date 12.05.2010 7

12.05.2012

Adding of years 2

Date 12.05.2010 7

12.08.2010

Adding of months 3

Date 12.05.2010 7

02.06.2010

Adding of days 21

Date 15.05.2010 7

17.05.2010

Next working day

List March 7 January First element of

the list

List April 7 July

May 7 August

Absolute change 3

6

ecognized Action
ecognized Action

Rule invocation

.actionID

4.3 Data Representation in CLIPS

The discussed approach was realized as a set of rules in

CLIPS. The templates for definition of the control ([14]),

trail, recognized action and set of actions are given below:

;;----------- defines data for a control -------------------------------

(deftemplate control_template

"P_Control"

(slot ID (type INTEGER) (default ?NONE))

(slot groupID (type INTEGER) (default ?NONE))

(slot position (type INTEGER) (default ?DERIVE))

(slot style (type STRING) (default ?NONE))

(slot type (type STRING) (default ?NONE))

(slot contolType (type STRING) (default ?NONE))

(slot accessRule (type STRING) (default ?DERIVE))

(slot dataBinding (type STRING) (default ?DERIVE))

(slot validatorType (type STRING) (default ?DERIVE))

(slot labelID (type STRING) (default ?DERIVE))

(slot label (type STRING) (default ?DERIVE))

(slot convertorType (type STRING) (default ?DERIVE))

(slot labelStyle (type STRING) (default ?NONE))

(slot addPosition (type INTEGER) (default ?DERIVE)))

;;----------- defines data for a single action (user trails) ----------

(deftemplate trail_template

"P_Trail"
(slot trailID (type INTEGER) (default ?NONE))
(slot eventID (type INTEGER) (default ?DERIVE))
(slot controlID (type INTEGER) (default ?DERIVE))
(slot controlName (type STRING) (default ?NONE))
(slot controlType (type STRING) (default ?DERIVE))
(slot oldValue (type STRING) (default ?DERIVE))
(slot newValue (type STRING) (default ?DERIVE)))

;;----------- describes one action found among the trail_template facts --

(deftemplate action_r

"P_Action"

(slot actionID (type STRING) (default ""))

(slot controlID (type INTEGER) (default ?DERIVE))

(slot controlType (type STRING) (default ?DERIVE))

(slot type (type STRING) (default "STRING"))

(slot changeType (type STRING) (default "UNDEFINED"))

(slot changeValue (type STRING) (default " "))

(slot weight (type FLOAT) (default 0.000000))

(multislot trailsIn (type INTEGER) (default ?DERIVE)))

;;----------- describes an action, consisting of several actions -----

(deftemplate action_set

"P_MultiAction"

(slot actionID (type STRING) (default ""))

(slot weight (type FLOAT) (default 0.000000))

(multislot actionsList (type INTEGER) (default ?DERIVE))

(multislot trailsList (type INTEGER) (default ?DERIVE)))

4.4 Dynamic Modification

Once the module has information concerning actions and

action sets discovered, the GUI changes can take place. A

CLIPS rule determines the action sets with the highest

weight. Then it automatically creates buttons for the 3

action sets with the highest weight. The buttons are

displayed in a special group below the main frame. The

buttons are defined as facts and they are added to the GUI

description before rendering. For each button a

corresponding rule is automatically created, which is

responsible for performing the data modification

accordingly the recognized pattern.

If the user decides to press one of the buttons, the

function loads the data objects back to CLIPS. The new

rules take the data according the data binding information,

kept in the control_template facts (fig. 3) and performs the

set of changes instead the user, saves the modified data

back to the data objects.

Actions Set (fact)

action_set

.actionsList

.controlID

Control description (fact)

control_template

.dataBinding

Figure 3: Data flow in dynamic data modification

5. Experimental Results

A Web application, built in Java, was developed as a test

environment for the research [14]. It is working with

financial instruments information (contracts, conventions,

cashflow, etc.).

The application loads the descriptions in and converts

them to a hierarchical structure of objects. The descriptions

of the user activity and GUI definition are converted to

facts and loaded into CLIPS engine. The discussed

approach was tested with sample data. The performed

actions were observed and saved under user ID.

Below a part of the facts, created from the collected

data for the user activity, is shown.

f-1(trail_template (trailID 112)(eventID 10)(controlID 445)

(controlName "EvalDate")(controlType "DATE_TIME") (oldValue

"20090424") (newValue "20091024"))

f-2(trail_template (trailID 112)(eventID 11)(controlID 446)

Data Description (fact)

R
R

Recognized Action

action_r

7

(controlName "Action")(controlType "EDIT")(oldValue "Control")

(newValue "CONTROL"))

f-3(trail_template (trailID 112)(eventID 12) (controlID 447)

(controlName "Type")(controlType "EDIT")(oldValue "grid")

(newValue "Grid"))

f-4(trail_template (trailID 112)(eventID 13) (controlID 448)

(controlName "Amount") (controlType "EDIT")(oldValue "0.89")

(newValue "2.89"))

f-5(trail_template (trailID 113)(eventID 10) (controlID 445)

(controlName "EvalDate") (controlType "DATE_TIME")(oldValue

"20100121")(newValue "20100721"))

f-6(trail_template (trailID 113)(eventID 11) (controlID 446)

(controlName "Action")(controlType "EDIT")(oldValue "Moon")

(newValue "MOON"))

f-7(trail_template (trailID 113)(eventID 12) (controlID 448)

(controlName "Amount")(controlType "EDIT")(oldValue "0.70")

(newValue "2.70"))

f-8(trail_template (trailID 114)(eventID 10) (controlID 445)

(controlName "EvalDate") (controlType "DATE_TIME")(oldValue

"20071111") (newValue "20080511"))

f-9(trail_template (trailID 114)(eventID 11) (controlID 446)

(controlName "Action")(controlType "EDIT")(oldValue "wheel")

(newValue "WHEEL"))

f-10(trail_template (trailID 114)(eventID 12) (controlID 448)

(controlName "Amount")(controlType "EDIT")(oldValue "2.70")

(newValue "4.70"))

A set of rules searches for the patterns, shown in table

1. The following repeatable actions were found:

f-67(action_r (actionID "S_ACT_ID_2")(controlID 448)(controlType

"EDIT")(type "NUMBER")(changeType "RELATIVE_CHANGE")

(changeValue 0.574)(weight 1.0)(trailsIn 114))

f-69(action_r (actionID "S_ACT_ID_1")(controlID 448)(controlType

"EDIT")(type "STRING")(changeType "CONSTANT")(changeValue

"4.70")(weight 1.0)(trailsIn 114))

f-75(action_r (actionID "S_ACT_ID_5")(controlID 446)(controlType

"EDIT")(type "STRING")(changeType "CONSTANT")(changeValue

"WHEEL")(weight 1.0)(trailsIn 114))

f-77(action_r (actionID "S_ACT_ID_9")(controlID 448)(controlType

"EDIT")(type "NUMBER")(changeType "RELATIVE_CHANGE")

(changeValue 0.259)(weight 1.0)(trailsIn 113))

f-79(action_r (actionID "S_ACT_ID_8")(controlID 448)(controlType

"EDIT")(type "STRING")(changeType "CONSTANT")(changeValue

"2.70")(weight 1.0)(trailsIn 113))

f-85 (action_r (actionID "S_ACT_ID_12")(controlID 446)(controlType

"EDIT")(type "STRING")(changeType "CONSTANT")(changeValue

"MOON")(weight 1.0)(trailsIn 113))

f-138(action_r (actionID "S_ACT_ID_3")(controlID 448)(controlType

"EDIT")(type "NUMBER")(changeType "ABSOLUTE_CHANGE")

(changeValue -2.0)(weight 3.0)(trailsIn 114 113 112))

f-143(action_r (actionID "S_ACT_ID_16")(controlID 448)(controlType

"EDIT")(type "NUMBER")(changeType "RELATIVE_CHANGE")

(changeValue 0.307)(weight 1.0)(trailsIn 112))

f-149(action_r (actionID "S_ACT_ID_15")(controlID 448)(controlType

"EDIT")(type "STRING")(changeType "CONSTANT")(changeValue

"2.89")(weight 1.0)(trailsIn 112))

f-159(action_r (actionID "S_ACT_ID_19")(controlID 447)(controlType

"EDIT")(type "STRING")(changeType "CONSTANT")(changeValue

"Grid")(weight 1.0)(trailsIn 112))

f-169(action_r (actionID "S_ACT_ID_18")(controlID 447)(controlType

"EDIT")(type "STRING")(changeType "FIRST_CAP")(changeValue

"")(weight 1.0)(trailsIn 112))

f-187(action_r (actionID "S_ACT_ID_21")(controlID 446)(controlType

"EDIT")(type "STRING")(changeType "CONSTANT")(changeValue

"CONTROL")(weight 1.0)(trailsIn 112))

f-236(action_r (actionID "S_ACT_ID_4")(controlID 446)(controlType

"EDIT")(type "STRING")(changeType "UPPER_CASE")(changeValue

"")(weight 3.0)(trailsIn 114 113 112))

f-100(action_r (actionID "S_ACT_ID_7")(controlID 445)(controlType

"DATE_TIME")(type "DATE")(changeType "PLUS_DAYS")

(changeValue 181)(weight 2.0)(trailsIn 114 113))

f-285(action_r (actionID "S_ACT_ID_23")(controlID 445)(controlType

"DATE_TIME")(type "DATE")(changeType "PLUS_DAYS")

(changeValue 183)(weight 1.0)(trailsIn 112))

f-328(action_r (actionID "S_ACT_ID_6")(controlID 445)(controlType

"DATE_TIME")(type "DATE")(changeType "PLUS_MONTHS")

(changeValue 6)(weight 3.0)(trailsIn 114 113 112))

In the second stage the rules, which are applied over

the repeatable action facts, create facts for action sets

determined according the algorithm, discussed in p. 4.2.2.

The rule action-rule-generation, shown below,

;;- finds the multi action facts with highest weight and generates rules ---

(defrule action-rule-generation

?trails-control<-(trail_counter (ruleGeneration TRUE))

=>

; step 1: to find the highest rank multi-action facts

(bind ?highest-rank-action-sets (find-actions-with-max-weight))

; step 2: to delete previous rules (if there are any)

(bind ?all-rules (get-defrule-list))

(loop-for-count (?i 1 ?*art-ai-rules*) do

(bind ?curr-rule (create$ (string-to-field (create-rule-id ?i))))

(if (= 2 (compare-two-lists ?curr-rule ?all-rules)) then

(undefrule (nth$ 1 ?curr-rule))

)

)

; step 3: to create the controls

(create-controls ?highest-rank-action-sets)

; step 4: to generate new rules

(create-rules ?highest-rank-action-sets)

; step 4: to reset the flag

(modify ?trails-control (ruleGeneration FALSE))

)

determines the following action sets with highest weight:

f-331 (action_set (actionID "M_ACT_ID_1051")(weight 9.0)

(actionsList "S_ACT_ID_3" "S_ACT_ID_4" "S_ACT_ID_6")(trailsList

112 113 114))

f-246 (action_set (actionID "M_ACT_ID_1006")(weight 6.0)

(actionsList "S_ACT_ID_7" "S_ACT_ID_3" "S_ACT_ID_4")(trailsList

113 114))

f-323 (action_set (actionID "M_ACT_ID_1052")(weight 6.0)

(actionsList "S_ACT_ID_4" "S_ACT_ID_6")(trailsList 114 113 112))

The 3 new facts, describing the suggested actions were

created. The list of the final 3 facts (M_ACT_ID_1051,

M_ACT_ID_1006, M_ACT_ID_1052) is used for generation of the

rules, responsible for performing identical modifications on

the data from the data objects if the user decides to press

one of the new buttons.

6. Conclusion

The tests of the approach were encouraging. The rules were

able to locate repeatable actions, the transfer of the data

from the application to the CLIPS engine and vice versa are

working properly.

The rule-based approach provides an easy-to-extend

framework. New logic (also project-dependent one) can be

added by adding new rules.

With increasing of the amount of the data for the user

activity there some performance issues could be expected.

To solve this problem the following steps are planned:

8

scheduling the analysis of the user activities as an overnight

task, saving the collected information for the discovered

actions and using it on later stage, thus eliminating the need

for complete recalculation.

Currently the information, collected for the same user

is used for deducing concerning his activities. The isolated

actions from other users could be used as well.

The automatically created buttons must have

reasonable names, created from the rules.

Comprehensive tests are still to be performed.

The application has to be able to work properly also

with empty knowledge base. The idea, suggested in [21],

that the UI designer can provide few typical user traces as

samples is planned to be used ([14]).

The other directions of implementation, discussed in

p. 2.1., are to be investigated as well. The Content

personalization direction is determined as the next area of

interest.

References

[1] A. Jameson, Adaptive interfaces and agents, Human-

Computer Interaction Handbook (Erlbaum, 2003)

[2] B. Price, R. Greiner, G. Häubl & A. Flatt, Automatic

construction of personalized customer interfaces, Proc.

11th international conference on Intelligent user interfaces,

2006, 250-257.

[3] H. Schaumburg, Computers as tools or as social

actors? The users' perspective on anthropomorphic agents,

International Journal on Intelligent Cooperative

Information Systems, 10(1-2),2001, 217-234

[4] E. Horvitz, J. Breese, D. Heckerman, D. Hovel & K.

Rommelse, The Lumiere Project: Bayesian User Modelling

for Inferring the Goals and Needs of Software Users, Proc.

14th Conference on Uncertainty in Artificial Intelligence,

1990, 256 –265.

[5] R. Segal, J. Kephart, Incremental learning in

SwiftFile, Proc. 17th International Conference on Machine

Learning, 2000, 863-870.

[6] A. Paramythis, A. Savidis & C. Stephanidis,

AVANTI: a universally accessible web browser. Proc.

Human-Computer Interaction (HCI’2001), 2001, 91-95.

[7] J. Macías, P. Castells, Dynamic web page authoring by

example using ontology-based domain knowledge, Proc.

8th international conference on Intelligent user interfaces

IUI’03,2003, 133-140.

[8] S. Trewin, H. Pain, A model of keyboard

configuration requirements. Proc. 3d International ACM

Conference on Assistive Technologies, 1998, 173-181

[9] J. Goecks, J. Shavlik, Learning users' interests by

unobtrusively observing their normal behaviour, Proc. 5th

International Conference on Intelligent User Interfaces IUI

2000, 2000, 129-132.

[10] S. Carberry, Techniques for plan recognition, User

Modelling and User-Adapted Interaction, 11(1-2), 2001,

31-48.

[11] E. Rich, User modelling via Stereotypes, Readings in

Intelligent User Interfaces (San Francisco, Morgan

Kaufmann, 1998), 329-341.

[12] J. Fink, A. Kobsa, A review and analysis of

commercial user modelling servers for personalization on

the world wide web. User Modelling and User-Adapted

Interaction, vol 10, 2000, 209 – 249

[13] P. Paskalev, I. Serafimova, Runtime generation of a

user interface, described in a database, Proc. International

Conference CompSysTech'09, 2009, VI.2.

[14] P. Paskalev, Rule based GUI modification and

adaptation, Proc. International Conference

CompSysTech'09, 2009, VI.3.

[15] P. Paskalev, A. Antonov, Intelligent application for

duplication detection, Proc. International Conference

CompSysTech 2006, 2006, IIIA.27.

[16] Y. Arens, L. Miller & N. Sondheimer, Presentation

design using an integrated knowledge base, Readings in

Intelligent User Interfaces (San Francisco, Morgan

Kaufmann, 1998), 131-139.

[17] J. Giarratano, CLIPS User’s Guide Version 6.20,

2002

[18] P. Paskalev, V. Nikolov, Multi-platform, script-based

user interface, Proc. International Conference on Computer

Systems and Technologies CompSysTech'04, 2004, IIIB.14.

[19] D. Koelle, Intelligent user interfaces,

http://web.cs.wpi.edu/Research/airg/IntInt/intint-

outline.html, 1996.

[20] A. Cooper, R. Reimann & D. Cronin, About Face.

The essentials of Interaction Design (3 ed., Wiley

Publishing, 2007)

[21] K. Gajos, D. Weld, SUPPLE: Automatically

Generating User Interfaces, Proc. 9th international

conference on Intelligent User Interfaces, 2004, 93-100.

[22] S. Roth, J. Kolojejchick, J. Mattis & J. Goldstein,

Interactive graphic design using automatic presentation

knowledge, , Readings in Intelligent User Interfaces (San

Francisco, Morgan Kaufmann, 1998), 237-242.

[23] W. Mackay, Triggers and barriers to customizing

software, Proc. SIGCHI conference on Human factors in

computing systems (ACM CHI’91), 1991, 153-160.

[24] A. Bunt, C. Conati & J. McGrenere, What Role Can

Adaptive Support Play in an Adaptable System? Proc. 9th

international conference on Intelligent User Interfaces

IUI2004, 2004, 117-124.

http://web.cs.wpi.edu/Research/airg/IntInt/intint-
http://web.cs.wpi.edu/Research/airg/IntInt/intint-

